Skip to main content
Thorax logoLink to Thorax
. 2000 Mar;55(3):205–209. doi: 10.1136/thorax.55.3.205

Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis

P Montuschi 1, S Kharitonov 1, G Ciabattoni 1, M Corradi 1, L van Rensen 1, D Geddes 1, M Hodson 1, P Barnes 1
PMCID: PMC1745696  PMID: 10679539

Abstract

BACKGROUND—Cystic fibrosis is characterised by oxidative stress in the airways. Isoprostanes are prostaglandin isomers formed by free radical catalysed peroxidation of arachidonic acid. 8-Isoprostane is increased in interstitial lung diseases, asthma, chronic obstructive pulmonary disease, and adult respiratory distress syndrome. Exhaled nitric oxide (NO) and carbon monoxide (CO) are biomarkers of inflammation and oxidative stress in the airways, respectively.
METHODS—Concentrations of 8-isoprostane in the breath condensate of 10 normal subjects and 19 patients with stable cystic fibrosis were measured using an enzyme immunoassay (EIA). Breath condensate is a non-invasive method of collecting airway secretions. Exhaled nitric oxide (NO) and carbon monoxide (CO) levels were measured by a chemiluminescence analyser.
RESULTS—Concentrations of 8-isoprostane in the breath condensate of patients with stable cystic fibrosis were increased about threefold compared with normal subjects (42.7 (4.5) pg/ml vs 15.2 (1.7) pg/ml; p<0.005, 95% CI 14.6 to 40.9). 8-Isoprostane concentrations were negatively correlated with forced expiratory volume in one second in patients with cystic fibrosis (r = −0.61; p<0.005). Exhaled CO was also increased in patients with cystic fibrosis compared with normal subjects (6.7 (1.2) ppm vs 2.9 (0.3) ppm; p<0.05, 95% CI 0.2 to 7.4). 8-Isoprostane concentrations were significantly correlated with CO levels (r = 0.66; p<0.002).
CONCLUSIONS—The results of this study show that oxidative stress is increased in cystic fibrosis and may be quantified by measuring 8-isoprostane concentrations in breath condensate.



Full Text

The Full Text of this article is available as a PDF (130.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown R. K., Kelly F. J. Evidence for increased oxidative damage in patients with cystic fibrosis. Pediatr Res. 1994 Oct;36(4):487–493. doi: 10.1203/00006450-199410000-00013. [DOI] [PubMed] [Google Scholar]
  2. Brown R. K., Wyatt H., Price J. F., Kelly F. J. Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. Eur Respir J. 1996 Feb;9(2):334–339. doi: 10.1183/09031936.96.09020334. [DOI] [PubMed] [Google Scholar]
  3. Carpenter C. T., Price P. V., Christman B. W. Exhaled breath condensate isoprostanes are elevated in patients with acute lung injury or ARDS. Chest. 1998 Dec;114(6):1653–1659. doi: 10.1378/chest.114.6.1653. [DOI] [PubMed] [Google Scholar]
  4. Choi A. M., Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol. 1996 Jul;15(1):9–19. doi: 10.1165/ajrcmb.15.1.8679227. [DOI] [PubMed] [Google Scholar]
  5. Collins C. E., Quaggiotto P., Wood L., O'Loughlin E. V., Henry R. L., Garg M. L. Elevated plasma levels of F2 alpha isoprostane in cystic fibrosis. Lipids. 1999 Jun;34(6):551–556. doi: 10.1007/s11745-999-0397-1. [DOI] [PubMed] [Google Scholar]
  6. Grasemann H., Michler E., Wallot M., Ratjen F. Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol. 1997 Sep;24(3):173–177. doi: 10.1002/(sici)1099-0496(199709)24:3<173::aid-ppul2>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  7. Ho L. P., Innes J. A., Greening A. P. Nitrite levels in breath condensate of patients with cystic fibrosis is elevated in contrast to exhaled nitric oxide. Thorax. 1998 Aug;53(8):680–684. doi: 10.1136/thx.53.8.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holsclaw D. S., Jr Cystic fibrosis and pulmonary involvement from multiple perspectives. Semin Respir Infect. 1992 Sep;7(3):141–149. [PubMed] [Google Scholar]
  9. Hull J., Vervaart P., Grimwood K., Phelan P. Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax. 1997 Jun;52(6):557–560. doi: 10.1136/thx.52.6.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hung S. C., Hsu H. C., Chang S. C. Cerebral air embolism complicating bilevel positive airway pressure therapy. Eur Respir J. 1998 Jul;12(1):235–237. doi: 10.1183/09031936.98.12010235. [DOI] [PubMed] [Google Scholar]
  11. Kelley T. J., Drumm M. L. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J Clin Invest. 1998 Sep 15;102(6):1200–1207. doi: 10.1172/JCI2357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kharitonov S. A., Chung K. F., Evans D., O'Connor B. J., Barnes P. J. Increased exhaled nitric oxide in asthma is mainly derived from the lower respiratory tract. Am J Respir Crit Care Med. 1996 Jun;153(6 Pt 1):1773–1780. doi: 10.1164/ajrccm.153.6.8665033. [DOI] [PubMed] [Google Scholar]
  13. Kharitonov S. A., Yates D., Robbins R. A., Logan-Sinclair R., Shinebourne E. A., Barnes P. J. Increased nitric oxide in exhaled air of asthmatic patients. Lancet. 1994 Jan 15;343(8890):133–135. doi: 10.1016/s0140-6736(94)90931-8. [DOI] [PubMed] [Google Scholar]
  14. Klein T., Reutter F., Schweer H., Seyberth H. W., Nüsing R. M. Generation of the isoprostane 8-epi-prostaglandin F2alpha in vitro and in vivo via the cyclooxygenases. J Pharmacol Exp Ther. 1997 Sep;282(3):1658–1665. [PubMed] [Google Scholar]
  15. Loukides S., Horvath I., Wodehouse T., Cole P. J., Barnes P. J. Elevated levels of expired breath hydrogen peroxide in bronchiectasis. Am J Respir Crit Care Med. 1998 Sep;158(3):991–994. doi: 10.1164/ajrccm.158.3.9710031. [DOI] [PubMed] [Google Scholar]
  16. McGrath L. T., Mallon P., Dowey L., Silke B., McClean E., McDonnell M., Devine A., Copeland S., Elborn S. Oxidative stress during acute respiratory exacerbations in cystic fibrosis. Thorax. 1999 Jun;54(6):518–523. doi: 10.1136/thx.54.6.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Montuschi P., Ciabattoni G., Paredi P., Pantelidis P., du Bois R. M., Kharitonov S. A., Barnes P. J. 8-Isoprostane as a biomarker of oxidative stress in interstitial lung diseases. Am J Respir Crit Care Med. 1998 Nov;158(5 Pt 1):1524–1527. doi: 10.1164/ajrccm.158.5.9803102. [DOI] [PubMed] [Google Scholar]
  18. Montuschi P., Corradi M., Ciabattoni G., Nightingale J., Kharitonov S. A., Barnes P. J. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med. 1999 Jul;160(1):216–220. doi: 10.1164/ajrccm.160.1.9809140. [DOI] [PubMed] [Google Scholar]
  19. Montuschi P., Currò D., Ragazzoni E., Preziosi P., Ciabattoni G. Anaphylaxis increases 8-iso-prostaglandin F2alpha release from guinea-pig lung in vitro. Eur J Pharmacol. 1999 Jan 15;365(1):59–64. doi: 10.1016/s0014-2999(98)00859-0. [DOI] [PubMed] [Google Scholar]
  20. Moore K., Roberts L. J., 2nd Measurement of lipid peroxidation. Free Radic Res. 1998 Jun;28(6):659–671. doi: 10.3109/10715769809065821. [DOI] [PubMed] [Google Scholar]
  21. Morrow J. D., Awad J. A., Boss H. J., Blair I. A., Roberts L. J., 2nd Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10721–10725. doi: 10.1073/pnas.89.22.10721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morrow J. D., Frei B., Longmire A. W., Gaziano J. M., Lynch S. M., Shyr Y., Strauss W. E., Oates J. A., Roberts L. J., 2nd Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med. 1995 May 4;332(18):1198–1203. doi: 10.1056/NEJM199505043321804. [DOI] [PubMed] [Google Scholar]
  23. Morrow J. D., Hill K. E., Burk R. F., Nammour T. M., Badr K. F., Roberts L. J., 2nd A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9383–9387. doi: 10.1073/pnas.87.23.9383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pratico D., Lawson J. A., FitzGerald G. A. Cyclooxygenase-dependent formation of the isoprostane, 8-epi prostaglandin F2 alpha. J Biol Chem. 1995 Apr 28;270(17):9800–9808. doi: 10.1074/jbc.270.17.9800. [DOI] [PubMed] [Google Scholar]
  25. Praticò D., Basili S., Vieri M., Cordova C., Violi F., Fitzgerald G. A. Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F2alpha-III, an index of oxidant stress. Am J Respir Crit Care Med. 1998 Dec;158(6):1709–1714. doi: 10.1164/ajrccm.158.6.9709066. [DOI] [PubMed] [Google Scholar]
  26. Stein C. M., Tanner S. B., Awad J. A., Roberts L. J., 2nd, Morrow J. D. Evidence of free radical-mediated injury (isoprostane overproduction) in scleroderma. Arthritis Rheum. 1996 Jul;39(7):1146–1150. doi: 10.1002/art.1780390711. [DOI] [PubMed] [Google Scholar]
  27. Wang Z., Ciabattoni G., Créminon C., Lawson J., Fitzgerald G. A., Patrono C., Maclouf J. Immunological characterization of urinary 8-epi-prostaglandin F2 alpha excretion in man. J Pharmacol Exp Ther. 1995 Oct;275(1):94–100. [PubMed] [Google Scholar]
  28. Witko-Sarsat V., Delacourt C., Rabier D., Bardet J., Nguyen A. T., Descamps-Latscha B. Neutrophil-derived long-lived oxidants in cystic fibrosis sputum. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):1910–1916. doi: 10.1164/ajrccm.152.6.8520754. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES