Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jan;65(1):171–178. doi: 10.1128/iai.65.1.171-178.1997

Vaccine efficacy of Salmonella strains expressing glycoprotein 63 with different promoters.

S J McSorley 1, D Xu 1, F Y Liew 1
PMCID: PMC174572  PMID: 8975908

Abstract

The development of Salmonella vaccine vectors has been hindered by both the requirement for multiple doses to induce immune responses and a lack of plasmid stability. Direct comparisons of different promoter systems with the same antigen are necessary to address these important issues. We have previously described an AroA- AroD- deletion mutant of Salmonella typhimurium (GID101) which expresses the gene encoding the Leishmania major promastigote surface glycoprotein gp63 (GID101). While this construct provided significant protection against L. major challenge to highly susceptible BALB/c mice, this required at least two oral doses. We report here the use of two different inducible promoters, the nirB and osmC promoters, to improve vaccine efficacy. These constructs (termed GID105 and GID106, respectively) expressed gp63 in vitro under inducible conditions and colonized BALB/c mice after oral administration. GID105 demonstrated greater plasmid stability in vitro and in vivo than did either GID106 or GID101, which expresses gp63 constitutively. Spleen and lymph node cells from mice immunized with a single oral dose of GID105 proliferated in vitro in response to L. major and secreted gamma interferon, whereas cells from mice given the other constructs did not. Mice immunized with a single oral dose of GID1O5 or GID106 developed significantly smaller lesions upon challenge with L. major, whereas mice administered GID101 did not. Mice administered GID105 also showed considerable resistance to Leishmania donovani infection. These data provide a direct comparison of promoter systems and demonstrate that the use of inducible promoters such as the nirB promoter allows a considerable improvement over the previous vaccine construct in terms of protection against infection.

Full Text

The Full Text of this article is available as a PDF (390.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann E., Brosius J., Ptashne M. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene. 1983 Nov;25(2-3):167–178. doi: 10.1016/0378-1119(83)90222-6. [DOI] [PubMed] [Google Scholar]
  2. Bullas L. R., Ryu J. I. Salmonella typhimurium LT2 strains which are r- m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol. 1983 Oct;156(1):471–474. doi: 10.1128/jb.156.1.471-474.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Button L. L., Russell D. G., Klein H. L., Medina-Acosta E., Karess R. E., McMaster W. R. Genes encoding the major surface glycoprotein in Leishmania are tandemly linked at a single chromosomal locus and are constitutively transcribed. Mol Biochem Parasitol. 1989 Jan 15;32(2-3):271–283. doi: 10.1016/0166-6851(89)90076-5. [DOI] [PubMed] [Google Scholar]
  4. Chabalgoity J. A., Khan C. M., Nash A. A., Hormaeche C. E. A Salmonella typhimurium htrA live vaccine expressing multiple copies of a peptide comprising amino acids 8-23 of herpes simplex virus glycoprotein D as a genetic fusion to tetanus toxin fragment C protects mice from herpes simplex virus infection. Mol Microbiol. 1996 Feb;19(4):791–801. doi: 10.1046/j.1365-2958.1996.426965.x. [DOI] [PubMed] [Google Scholar]
  5. Chatfield S. N., Charles I. G., Makoff A. J., Oxer M. D., Dougan G., Pickard D., Slater D., Fairweather N. F. Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral tetanus vaccine. Biotechnology (N Y) 1992 Aug;10(8):888–892. doi: 10.1038/nbt0892-888. [DOI] [PubMed] [Google Scholar]
  6. Cole J. A. Cytochrome c552 and nitrite reduction in Escherichia coli. Biochim Biophys Acta. 1968 Oct 1;162(3):356–368. doi: 10.1016/0005-2728(68)90122-9. [DOI] [PubMed] [Google Scholar]
  7. Coulson N. M., Fulop M., Titball R. W. Bacillus anthracis protective antigen, expressed in Salmonella typhimurium SL 3261, affords protection against anthrax spore challenge. Vaccine. 1994 Nov;12(15):1395–1401. doi: 10.1016/0264-410x(94)90148-1. [DOI] [PubMed] [Google Scholar]
  8. Everest P., Frankel G., Li J., Lund P., Chatfield S., Dougan G. Expression of LacZ from the htrA, nirB and groE promoters in a Salmonella vaccine strain: influence of growth in mammalian cells. FEMS Microbiol Lett. 1995 Feb 1;126(1):97–101. doi: 10.1111/j.1574-6968.1995.tb07398.x. [DOI] [PubMed] [Google Scholar]
  9. Gutierrez C., Devedjian J. C. Osmotic induction of gene osmC expression in Escherichia coli K12. J Mol Biol. 1991 Aug 20;220(4):959–973. doi: 10.1016/0022-2836(91)90366-e. [DOI] [PubMed] [Google Scholar]
  10. Heinzel F. P., Sadick M. D., Holaday B. J., Coffman R. L., Locksley R. M. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med. 1989 Jan 1;169(1):59–72. doi: 10.1084/jem.169.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hess J., Gentschev I., Miko D., Welzel M., Ladel C., Goebel W., Kaufmann S. H. Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1458–1463. doi: 10.1073/pnas.93.4.1458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hohmann E. L., Oletta C. A., Loomis W. P., Miller S. I. Macrophage-inducible expression of a model antigen in Salmonella typhimurium enhances immunogenicity. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2904–2908. doi: 10.1073/pnas.92.7.2904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hone D., Attridge S., van den Bosch L., Hackett J. A chromosomal integration system for stabilization of heterologous genes in Salmonella based vaccine strains. Microb Pathog. 1988 Dec;5(6):407–418. doi: 10.1016/0882-4010(88)90002-2. [DOI] [PubMed] [Google Scholar]
  14. Jayaraman P. S., Peakman T. C., Busby S. J., Quincey R. V., Cole J. A. Location and sequence of the promoter of the gene for the NADH-dependent nitrite reductase of Escherichia coli and its regulation by oxygen, the Fnr protein and nitrite. J Mol Biol. 1987 Aug 20;196(4):781–788. doi: 10.1016/0022-2836(87)90404-9. [DOI] [PubMed] [Google Scholar]
  15. Karem K. L., Chatfield S., Kuklin N., Rouse B. T. Differential induction of carrier antigen-specific immunity by Salmonella typhimurium live-vaccine strains after single mucosal or intravenous immunization of BALB/c mice. Infect Immun. 1995 Dec;63(12):4557–4563. doi: 10.1128/iai.63.12.4557-4563.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaye P. M. Acquisition of cell-mediated immunity to Leishmania. I. Primary T-cell activation detected by IL-2 receptor expression. Immunology. 1987 Jul;61(3):345–349. [PMC free article] [PubMed] [Google Scholar]
  17. Khan C. M., Villarreal-Ramos B., Pierce R. J., Demarco de Hormaeche R., McNeill H., Ali T., Chatfield S., Capron A., Dougan G., Hormaeche C. E. Construction, expression, and immunogenicity of multiple tandem copies of the Schistosoma mansoni peptide 115-131 of the P28 glutathione S-transferase expressed as C-terminal fusions to tetanus toxin fragment C in a live aro-attenuated vaccine strain of Salmonella. J Immunol. 1994 Dec 15;153(12):5634–5642. [PubMed] [Google Scholar]
  18. Khan C. M., Villarreal-Ramos B., Pierce R. J., Riveau G., Demarco de Hormaeche R., McNeill H., Ali T., Fairweather N., Chatfield S., Capron A. Construction, expression, and immunogenicity of the Schistosoma mansoni P28 glutathione S-transferase as a genetic fusion to tetanus toxin fragment C in a live Aro attenuated vaccine strain of Salmonella. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11261–11265. doi: 10.1073/pnas.91.23.11261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lederberg E. M., Cohen S. N. Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. J Bacteriol. 1974 Sep;119(3):1072–1074. doi: 10.1128/jb.119.3.1072-1074.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liew F. Y., Dhaliwal J. S. Distinctive cellular immunity in genetically susceptible BALB/c mice recovered from Leishmania major infection or after subcutaneous immunization with killed parasites. J Immunol. 1987 Jun 15;138(12):4450–4456. [PubMed] [Google Scholar]
  22. Liew F. Y., Howard J. G., Hale C. Prophylactic immunization against experimental leishmaniasis. III. Protection against fatal Leishmania tropica infection induced by irradiated promastigotes involves Lyt-1+2- T cells that do not mediate cutaneous DTH. J Immunol. 1984 Jan;132(1):456–461. [PubMed] [Google Scholar]
  23. Liew F. Y., O'Donnell C. A. Immunology of leishmaniasis. Adv Parasitol. 1993;32:161–259. doi: 10.1016/s0065-308x(08)60208-0. [DOI] [PubMed] [Google Scholar]
  24. Liew F. Y., Parkinson C., Millott S., Severn A., Carrier M. Tumour necrosis factor (TNF alpha) in leishmaniasis. I. TNF alpha mediates host protection against cutaneous leishmaniasis. Immunology. 1990 Apr;69(4):570–573. [PMC free article] [PubMed] [Google Scholar]
  25. Maskell D. J., Sweeney K. J., O'Callaghan D., Hormaeche C. E., Liew F. Y., Dougan G. Salmonella typhimurium aroA mutants as carriers of the Escherichia coli heat-labile enterotoxin B subunit to the murine secretory and systemic immune systems. Microb Pathog. 1987 Mar;2(3):211–221. doi: 10.1016/0882-4010(87)90022-2. [DOI] [PubMed] [Google Scholar]
  26. Newton S. M., Klebba P. E., Hofnung M., Charbit A. Studies of the anaerobically induced promoter pnirB and the improved expression of bacterial antigens. Res Microbiol. 1995 Mar-Apr;146(3):193–202. doi: 10.1016/0923-2508(96)80275-0. [DOI] [PubMed] [Google Scholar]
  27. O'Callaghan D., Maskell D., Liew F. Y., Easmon C. S., Dougan G. Characterization of aromatic- and purine-dependent Salmonella typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect Immun. 1988 Feb;56(2):419–423. doi: 10.1128/iai.56.2.419-423.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oxer M. D., Bentley C. M., Doyle J. G., Peakman T. C., Charles I. G., Makoff A. J. High level heterologous expression in E. coli using the anaerobically-activated nirB promoter. Nucleic Acids Res. 1991 Jun 11;19(11):2889–2892. doi: 10.1093/nar/19.11.2889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reiner S. L., Locksley R. M. The regulation of immunity to Leishmania major. Annu Rev Immunol. 1995;13:151–177. doi: 10.1146/annurev.iy.13.040195.001055. [DOI] [PubMed] [Google Scholar]
  30. Rothstein R., Wu R. Modification of the bacteriophage vector M13mp2: introduction of new restriction sites for cloning. Gene. 1981 Nov;15(2-3):167–176. doi: 10.1016/0378-1119(81)90126-8. [DOI] [PubMed] [Google Scholar]
  31. Strugnell R. A., Maskell D., Fairweather N., Pickard D., Cockayne A., Penn C., Dougan G. Stable expression of foreign antigens from the chromosome of Salmonella typhimurium vaccine strains. Gene. 1990 Mar 30;88(1):57–63. doi: 10.1016/0378-1119(90)90059-z. [DOI] [PubMed] [Google Scholar]
  32. Strugnell R., Dougan G., Chatfield S., Charles I., Fairweather N., Tite J., Li J. L., Beesley J., Roberts M. Characterization of a Salmonella typhimurium aro vaccine strain expressing the P.69 antigen of Bordetella pertussis. Infect Immun. 1992 Oct;60(10):3994–4002. doi: 10.1128/iai.60.10.3994-4002.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tartera C., Metcalf E. S. Osmolarity and growth phase overlap in regulation of Salmonella typhi adherence to and invasion of human intestinal cells. Infect Immun. 1993 Jul;61(7):3084–3089. doi: 10.1128/iai.61.7.3084-3089.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tijhaar E. J., Zheng-Xin Y., Karlas J. A., Meyer T. F., Stukart M. J., Osterhaus A. D., Mooi F. R. Construction and evaluation of an expression vector allowing the stable expression of foreign antigens in a Salmonella typhimurium vaccine strain. Vaccine. 1994 Aug;12(11):1004–1011. doi: 10.1016/0264-410x(94)90336-0. [DOI] [PubMed] [Google Scholar]
  35. Tzschaschel B. D., Guzmán C. A., Timmis K. N., de Lorenzo V. An Escherichia coli hemolysin transport system-based vector for the export of polypeptides: export of Shiga-like toxin IIeB subunit by Salmonella typhimurium aroA. Nat Biotechnol. 1996 Jun;14(6):765–769. doi: 10.1038/nbt0696-765. [DOI] [PubMed] [Google Scholar]
  36. Xu D., McSorley S. J., Chatfield S. N., Dougan G., Liew F. Y. Protection against Leishmania major infection in genetically susceptible BALB/c mice by gp63 delivered orally in attenuated Salmonella typhimurium (AroA- AroD-). Immunology. 1995 May;85(1):1–7. [PMC free article] [PubMed] [Google Scholar]
  37. Yang D. M., Fairweather N., Button L. L., McMaster W. R., Kahl L. P., Liew F. Y. Oral Salmonella typhimurium (AroA-) vaccine expressing a major leishmanial surface protein (gp63) preferentially induces T helper 1 cells and protective immunity against leishmaniasis. J Immunol. 1990 Oct 1;145(7):2281–2285. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES