Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Infection and Immunity logoLink to Infection and Immunity
. 1997 Jan;65(1):179–184. doi: 10.1128/iai.65.1.179-184.1997

Expression of an antisense hla fragment in Staphylococcus aureus reduces alpha-toxin production in vitro and attenuates lethal activity in a murine model.

D S Kernodle 1, R K Voladri 1, B E Menzies 1, C C Hager 1, K M Edwards 1
PMCID: PMC174573  PMID: 8975909

Abstract

Isogeneic bacterial strains that differ only in the production of a single microbial factor have been invaluable in studying the pathogenesis of bacterial infections. The targeted, intentional inactivation of a gene encoding a potential virulence determinant generally requires homologous recombination to replace the gene with an inactivated allele. To determine whether the insertion and expression of a fragment of a bacterial gene in an antisense orientation could be used as a rapid alternative to allelic inactivation for producing paired isogeneic isolates, we inverted a 600-bp fragment of the Staphylococcus aureus gene encoding alpha-toxin, hla, behind its native promoter on an Escherichia coli-S. aureus shuttle vector. A transformant of an S. aureus strain carrying the antisense hla fragment produced antisense hla RNA and made 16-fold less alpha-toxin than either its parent or an isogeneic transformant containing vector DNA without hla. Also, intraperitoneal injection of 1.5 x 10(9) CFU of the antisense hla-containing transformant was significantly less lethal in a murine model than that of the parent (1 of 10 versus 7 of 10 mice expired [P < 0.02]) or the transformant without hla (1 of 10 versus 7 of 7 mice expired [P < 0.001]). We conclude that the expression of a fragment of hla in an antisense orientation in S. aureus on a plasmid vector reduces alpha-toxin production and the lethal activity of the strain in a murine model. The antisense strategy for creating isogeneic strains of bacteria may facilitate molecular investigations into the pathogenesis of infection. It also may be useful in creating novel live-attenuated strains of bacteria for use as vaccine candidates.

Full Text

The Full Text of this article is available as a PDF (245.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alunni-Fabbroni M., Manfioletti G., Manzini G., Xodo L. E. Inhibition of T7 RNA polymerase transcription by phosphate and phosphorothioate triplex-forming oligonucleotides targeted to a R.Y site downstream from the promoter. Eur J Biochem. 1994 Dec 15;226(3):831–839. doi: 10.1111/j.1432-1033.1994.00831.x. [DOI] [PubMed] [Google Scholar]
  2. Bass B. L., Weintraub H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell. 1988 Dec 23;55(6):1089–1098. doi: 10.1016/0092-8674(88)90253-x. [DOI] [PubMed] [Google Scholar]
  3. Bernheimer A. W. Assay of hemolytic toxins. Methods Enzymol. 1988;165:213–217. doi: 10.1016/s0076-6879(88)65033-6. [DOI] [PubMed] [Google Scholar]
  4. Bernheimer A. W. Staphylococcal alpha toxin. Ann N Y Acad Sci. 1965 Jul 23;128(1):112–123. doi: 10.1111/j.1749-6632.1965.tb11633.x. [DOI] [PubMed] [Google Scholar]
  5. Bhakdi S., Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev. 1991 Dec;55(4):733–751. doi: 10.1128/mr.55.4.733-751.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Cagnon L., Cucchiarini M., Lefebvre J. C., Doglio A. Protection of a T-cell line from human immunodeficiency virus replication by the stable expression of a short antisense RNA sequence carried by a shuttle RNA molecule. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Aug 1;9(4):349–358. [PubMed] [Google Scholar]
  8. Cassidy P., Harshman S. Purification of staphylococcal alpha-toxin by adsorption chromatography on glass. Infect Immun. 1976 Mar;13(3):982–986. doi: 10.1128/iai.13.3.982-986.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Day A. G., Bejarano E. R., Buck K. W., Burrell M., Lichtenstein C. P. Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6721–6725. doi: 10.1073/pnas.88.15.6721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Falkow S. Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis. 1988 Jul-Aug;10 (Suppl 2):S274–S276. doi: 10.1093/cid/10.supplement_2.s274. [DOI] [PubMed] [Google Scholar]
  11. Gaillard J. L., Berche P., Sansonetti P. Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect Immun. 1986 Apr;52(1):50–55. doi: 10.1128/iai.52.1.50-55.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Galli D. M., Leblanc D. J. Transcriptional analysis of rolling circle replicating plasmid pVT736-1: evidence for replication control by antisense RNA. J Bacteriol. 1995 Aug;177(15):4474–4480. doi: 10.1128/jb.177.15.4474-4480.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  14. Horinouchi S., Weisblum B. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. J Bacteriol. 1982 May;150(2):804–814. doi: 10.1128/jb.150.2.804-814.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hélène C. Control of oncogene expression by antisense nucleic acids. Eur J Cancer. 1994;30A(11):1721–1726. doi: 10.1016/0959-8049(93)e0352-q. [DOI] [PubMed] [Google Scholar]
  16. Isberg R. R., Falkow S. Genetic analysis of bacterial virulence determinants in Bordetella pertussis and the pathogenetic Yersinia. Curr Top Microbiol Immunol. 1985;118:1–11. doi: 10.1007/978-3-642-70586-1_1. [DOI] [PubMed] [Google Scholar]
  17. Kehoe M., Duncan J., Foster T., Fairweather N., Dougan G. Cloning, expression, and mapping of the Staphylococcus aureus alpha-hemolysin determinant in Escherichia coli K-12. Infect Immun. 1983 Sep;41(3):1105–1111. doi: 10.1128/iai.41.3.1105-1111.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee C. Y., Buranen S. L., Ye Z. H. Construction of single-copy integration vectors for Staphylococcus aureus. Gene. 1991 Jul 15;103(1):101–105. doi: 10.1016/0378-1119(91)90399-v. [DOI] [PubMed] [Google Scholar]
  19. Lee M. H., Pascopella L., Jacobs W. R., Jr, Hatfull G. F. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3111–3115. doi: 10.1073/pnas.88.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maekawa T., Kimura S., Hirakawa K., Murakami A., Zon G., Abe T. Sequence specificity on the growth suppression and induction of apoptosis of chronic myeloid leukemia cells by BCR-ABL anti-sense oligodeoxynucleoside phosphorothioates. Int J Cancer. 1995 Jul 4;62(1):63–69. doi: 10.1002/ijc.2910620113. [DOI] [PubMed] [Google Scholar]
  21. Menzies B. E., Kernodle D. S. Passive immunization with antiserum to a nontoxic alpha-toxin mutant from Staphylococcus aureus is protective in a murine model. Infect Immun. 1996 May;64(5):1839–1841. doi: 10.1128/iai.64.5.1839-1841.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Menzies B. E., Kernodle D. S. Site-directed mutagenesis of the alpha-toxin gene of Staphylococcus aureus: role of histidines in toxin activity in vitro and in a murine model. Infect Immun. 1994 May;62(5):1843–1847. doi: 10.1128/iai.62.5.1843-1847.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Newland J. W., Green B. A., Holmes R. K. Transposon-mediated mutagenesis and recombination in Vibrio cholerae. Infect Immun. 1984 Aug;45(2):428–432. doi: 10.1128/iai.45.2.428-432.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Patel A. H., Nowlan P., Weavers E. D., Foster T. Virulence of protein A-deficient and alpha-toxin-deficient mutants of Staphylococcus aureus isolated by allele replacement. Infect Immun. 1987 Dec;55(12):3103–3110. doi: 10.1128/iai.55.12.3103-3110.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ramazeilles C., Mishra R. K., Moreau S., Pascolo E., Toulmé J. J. Antisense phosphorothioate oligonucleotides: selective killing of the intracellular parasite Leishmania amazonensis. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):7859–7863. doi: 10.1073/pnas.91.17.7859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ramírez J. C., Santarén J. F., Almendral J. M. Transcriptional inhibition of the parvovirus minute virus of mice by constitutive expression of an antisense RNA targeted against the NS-1 transactivator protein. Virology. 1995 Jan 10;206(1):57–68. doi: 10.1016/s0042-6822(95)80019-0. [DOI] [PubMed] [Google Scholar]
  27. Ratajczak M. Z., Kant J. A., Luger S. M., Hijiya N., Zhang J., Zon G., Gewirtz A. M. In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11823–11827. doi: 10.1073/pnas.89.24.11823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rossi J. J. Therapeutic antisense and ribozymes. Br Med Bull. 1995 Jan;51(1):217–225. doi: 10.1093/oxfordjournals.bmb.a072948. [DOI] [PubMed] [Google Scholar]
  29. Smith C. J., Watson C. F., Morris P. C., Bird C. R., Seymour G. B., Gray J. E., Arnold C., Tucker G. A., Schuch W., Harding S. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol Biol. 1990 Mar;14(3):369–379. doi: 10.1007/BF00028773. [DOI] [PubMed] [Google Scholar]
  30. Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]
  31. Wagner E. G., Simons R. W. Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol. 1994;48:713–742. doi: 10.1146/annurev.mi.48.100194.003433. [DOI] [PubMed] [Google Scholar]
  32. Wagner R. W., Smith J. E., Cooperman B. S., Nishikura K. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2647–2651. doi: 10.1073/pnas.86.8.2647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weichold F. F., Lisziewicz J., Zeman R. A., Nerurkar L. S., Agrawal S., Reitz M. S., Jr, Gallo R. C. Antisense phosphorothioate oligodeoxynucleotides alter HIV type 1 replication in cultured human macrophages and peripheral blood mononuclear cells. AIDS Res Hum Retroviruses. 1995 Jul;11(7):863–867. doi: 10.1089/aid.1995.11.863. [DOI] [PubMed] [Google Scholar]
  34. Whitton J. L. Antisense treatment of viral infection. Adv Virus Res. 1994;44:267–303. doi: 10.1016/s0065-3527(08)60331-0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES