Abstract
The glnA gene from the human pathogen Streptococcus agalactiae was cloned from a genomic library prepared with the lambda phage vector lambdaDASHII. A 4.6-kb DNA fragment of one of the recombinant phages was subcloned in pUC18. This Escherichia coli clone expressed a 52-kDa protein encoded by a 1,341-bp open reading frame. The nucleotide sequence of the open reading frame and the deduced amino acid sequence shared a significant degree of homology with the sequences of other glutamine synthetases (GS). The highest homology was between our deduced protein and GS of gram-positive bacteria such as Bacillus subtilis, Bacillus cereus, and Staphylococcus aureus. Plasmids with the cloned streptococcal glnA were able to complement E. coli glnA mutants grown on minimal media. Rabbit antisera to streptococcal GS recombinant protein recognized not only the recombinant protein but also a similar-sized band in mutanolysin extracts of all group B streptococcal strains tested, regardless of polysaccharide type or surface protein profile. The amino acid sequence of the deduced protein had similarities to other streptococcal cell-surface-bound proteins. The possible functional role of the immunological features of streptococcal GS is discussed.
Full Text
The Full Text of this article is available as a PDF (322.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkinson M. R., Ninfa A. J. Characterization of Escherichia coli glnL mutations affecting nitrogen regulation. J Bacteriol. 1992 Jul;174(14):4538–4548. doi: 10.1128/jb.174.14.4538-4548.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen C. C., Cleary P. P. Complete nucleotide sequence of the streptococcal C5a peptidase gene of Streptococcus pyogenes. J Biol Chem. 1990 Feb 25;265(6):3161–3167. [PubMed] [Google Scholar]
- Chun C. S., Brady L. J., Boyle M. D., Dillon H. C., Ayoub E. M. Group B streptococcal C protein-associated antigens: association with neonatal sepsis. J Infect Dis. 1991 Apr;163(4):786–791. doi: 10.1093/infdis/163.4.786. [DOI] [PubMed] [Google Scholar]
- Claros M. G., von Heijne G. TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci. 1994 Dec;10(6):685–686. doi: 10.1093/bioinformatics/10.6.685. [DOI] [PubMed] [Google Scholar]
- Cleary P. P., Handley J., Suvorov A. N., Podbielski A., Ferrieri P. Similarity between the group B and A streptococcal C5a peptidase genes. Infect Immun. 1992 Oct;60(10):4239–4244. doi: 10.1128/iai.60.10.4239-4244.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fasola E., Livdahl C., Ferrieri P. Molecular analysis of multiple isolates of the major serotypes of group B streptococci. J Clin Microbiol. 1993 Oct;31(10):2616–2620. doi: 10.1128/jcm.31.10.2616-2620.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischetti V. A., Pancholi V., Schneewind O. Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol. 1990 Sep;4(9):1603–1605. doi: 10.1111/j.1365-2958.1990.tb02072.x. [DOI] [PubMed] [Google Scholar]
- Flores A. E., Nelson J. A., Wu X. Y., Ferrieri P. Antibody profiles to the group B streptococcal beta antigen in maternal and infant paired sera. APMIS. 1993 Jan;101(1):41–49. doi: 10.1111/j.1699-0463.1993.tb00079.x. [DOI] [PubMed] [Google Scholar]
- Frithz E., Hedén L. O., Lindahl G. Extensive sequence homology between IgA receptor and M proteins in Streptococcus pyogenes. Mol Microbiol. 1989 Aug;3(8):1111–1119. doi: 10.1111/j.1365-2958.1989.tb00261.x. [DOI] [PubMed] [Google Scholar]
- Geourjon C., Deléage G. Interactive and graphic coupling between multiple alignments, secondary structure predictions and motif/pattern scanning into proteins. Comput Appl Biosci. 1993 Feb;9(1):87–91. doi: 10.1093/bioinformatics/9.1.87. [DOI] [PubMed] [Google Scholar]
- Gustafson J., Strässle A., Hächler H., Kayser F. H., Berger-Bächi B. The femC locus of Staphylococcus aureus required for methicillin resistance includes the glutamine synthetase operon. J Bacteriol. 1994 Mar;176(5):1460–1467. doi: 10.1128/jb.176.5.1460-1467.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hedén L. O., Frithz E., Lindahl G. Molecular characterization of an IgA receptor from group B streptococci: sequence of the gene, identification of a proline-rich region with unique structure and isolation of N-terminal fragments with IgA-binding capacity. Eur J Immunol. 1991 Jun;21(6):1481–1490. doi: 10.1002/eji.1830210623. [DOI] [PubMed] [Google Scholar]
- Hollingshead S. K., Fischetti V. A., Scott J. R. Complete nucleotide sequence of type 6 M protein of the group A Streptococcus. Repetitive structure and membrane anchor. J Biol Chem. 1986 Feb 5;261(4):1677–1686. [PubMed] [Google Scholar]
- Jerlström P. G., Chhatwal G. S., Timmis K. N. The IgA-binding beta antigen of the c protein complex of Group B streptococci: sequence determination of its gene and detection of two binding regions. Mol Microbiol. 1991 Apr;5(4):843–849. doi: 10.1111/j.1365-2958.1991.tb00757.x. [DOI] [PubMed] [Google Scholar]
- Kumada Y., Benson D. R., Hillemann D., Hosted T. J., Rochefort D. A., Thompson C. J., Wohlleben W., Tateno Y. Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3009–3013. doi: 10.1073/pnas.90.7.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Michel J. L., Madoff L. C., Olson K., Kling D. E., Kasper D. L., Ausubel F. M. Large, identical, tandem repeating units in the C protein alpha antigen gene, bca, of group B streptococci. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10060–10064. doi: 10.1073/pnas.89.21.10060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munson R. S., Jr, Sasaki K. Protein D, a putative immunoglobulin D-binding protein produced by Haemophilus influenzae, is glycerophosphodiester phosphodiesterase. J Bacteriol. 1993 Jul;175(14):4569–4571. doi: 10.1128/jb.175.14.4569-4571.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakano Y., Kato C., Tanaka E., Kimura K., Horikoshi K. Nucleotide sequence of the glutamine synthetase gene (glnA) and its upstream region from Bacillus cereus. J Biochem. 1989 Aug;106(2):209–215. doi: 10.1093/oxfordjournals.jbchem.a122834. [DOI] [PubMed] [Google Scholar]
- O'Toole P. W., O'Toole P., Stenberg L., Rissler M., Lindahl G. Two major classes in the M protein family in group A streptococci. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8661–8665. doi: 10.1073/pnas.89.18.8661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pancholi V., Fischetti V. A. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med. 1992 Aug 1;176(2):415–426. doi: 10.1084/jem.176.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pesole G., Bozzetti M. P., Lanave C., Preparata G., Saccone C. Glutamine synthetase gene evolution: a good molecular clock. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):522–526. doi: 10.1073/pnas.88.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shuttleworth H. L., Duggleby C. J., Jones S. A., Atkinson T., Minton N. P. Nucleotide sequence analysis of the gene for protein A from Staphylococcus aureus Cowan 1 (NCTC8530) and its enhanced expression in Escherichia coli. Gene. 1987;58(2-3):283–295. doi: 10.1016/0378-1119(87)90383-0. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Strauch M. A., Aronson A. I., Brown S. W., Schreier H. J., Sonenhein A. L. Sequence of the Bacillus subtilis glutamine synthetase gene region. Gene. 1988 Nov 30;71(2):257–265. doi: 10.1016/0378-1119(88)90042-x. [DOI] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]