Skip to main content
Thorax logoLink to Thorax
. 2000 Jun;55(6):489–496. doi: 10.1136/thorax.55.6.489

An animal model for allergic penicilliosis induced by the intranasal instillation of viable Penicillium chrysogenum conidia

J Cooley 1, W Wong 1, C Jumper 1, J Hutson 1, H Williams 1, C Schwab 1, D Straus 1
PMCID: PMC1745784  PMID: 10817798

Abstract

BACKGROUND—A study was undertaken to determine the consequences of long term intranasal instillation of Penicillium chrysogenum propagules in a mouse model.
METHODS—C57 Black/6 mice were inoculated intranasally each week for six weeks with 104 viable and non-viable P chrysogenum conidia. Cytokine levels and cellular responses in these animals were then measured.
RESULTS—Compared with controls, mice inoculated intranasally each week for six weeks with 104P chrysogenum conidia (average viability 25%) produced significantly more total serum IgE (mean difference 1823.11, lower and upper 95% confidence intervals (CI) 539.09 to 3107.13), peripheral eosinophils (mean difference 5.11, 95% CI 2.24 to 7.99), and airway eosinophilia (rank difference 11.33, 95% CI 9.0 to 20.0). With the exception of airway neutrophilia (mean difference 20.89, 95% CI 3.72 to 38.06), mice inoculated intranasally with 104 non-viable conidia did not show significant changes in total serum IgE, peripheral or airway eosinophils. However, when compared with controls, this group (104 non-viable) had a significant increase in total serum IgG2a (mean difference 1990.56, 95% CI 790.48 to 3190.63) and bronchoalveolar lavage (BAL) fluid levels of interferon (IFN)-γ (mean difference 274.72, 95% CI 245.26 to 304.19). In addition, lung lavages from mice inoculated intranasally with 104 viable P chrysogenum conidia had significantly increased levels of interleukin (IL)-4 (mean difference 285.28, 95% CI 108.73 to 461.82) and IL-5 (mean difference 16.61, 95% CI 11.23 to 21.99). The IgG2a/IgE ratio and the IFN-γ/IL-4 ratio was lower in the group of mice inoculated intranasally with 104 viable conidia than in the 104 non-viable conidia group and the controls. When proteins were extracted from P chrysogenum conidia, attached to microtitre plates and incubated with serum from the 104 viable group, significant increases in conidia-specific IgE and IgG1 were observed compared with controls, while serum from the 104 non-viable group was similar to controls.
CONCLUSIONS—These data suggest that long term inhalation of viable P chrysogenum propagules induces type 2 T helper cell mediated (Th2) inflammatory responses such as increases in total and conidia-specific serum IgE and IgG1, together with BAL fluid levels of IL-4 and IL-5 and peripheral and airway eosinophilia, which are mediators of allergic reactions.



Full Text

The Full Text of this article is available as a PDF (228.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzawi M., Bradley B., Jeffery P. K., Frew A. J., Wardlaw A. J., Knowles G., Assoufi B., Collins J. V., Durham S., Kay A. B. Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am Rev Respir Dis. 1990 Dec;142(6 Pt 1):1407–1413. doi: 10.1164/ajrccm/142.6_Pt_1.1407. [DOI] [PubMed] [Google Scholar]
  2. Bentley A. M., Meng Q., Robinson D. S., Hamid Q., Kay A. B., Durham S. R. Increases in activated T lymphocytes, eosinophils, and cytokine mRNA expression for interleukin-5 and granulocyte/macrophage colony-stimulating factor in bronchial biopsies after allergen inhalation challenge in atopic asthmatics. Am J Respir Cell Mol Biol. 1993 Jan;8(1):35–42. doi: 10.1165/ajrcmb/8.1.35. [DOI] [PubMed] [Google Scholar]
  3. Coffman R. L., Carty J. A T cell activity that enhances polyclonal IgE production and its inhibition by interferon-gamma. J Immunol. 1986 Feb 1;136(3):949–954. [PubMed] [Google Scholar]
  4. Cooley J. D., Wong W. C., Jumper C. A., Straus D. C. Correlation between the prevalence of certain fungi and sick building syndrome. Occup Environ Med. 1998 Sep;55(9):579–584. doi: 10.1136/oem.55.9.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Herz U., Lumpp U., Da Palma J. C., Enssle K., Takatsu K., Schnoy N., Daser A., Köttgen E., Wahn U., Renz H. The relevance of murine animal models to study the development of allergic bronchial asthma. Immunol Cell Biol. 1996 Apr;74(2):209–217. doi: 10.1038/icb.1996.30. [DOI] [PubMed] [Google Scholar]
  6. Hodgson M. Field studies on the sick building syndrome. Ann N Y Acad Sci. 1992 Apr 30;641:21–36. doi: 10.1111/j.1749-6632.1992.tb16529.x. [DOI] [PubMed] [Google Scholar]
  7. Hsieh C. S., Heimberger A. B., Gold J. S., O'Garra A., Murphy K. M. Differential regulation of T helper phenotype development by interleukins 4 and 10 in an alpha beta T-cell-receptor transgenic system. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6065–6069. doi: 10.1073/pnas.89.13.6065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hutson J. C. The effects of various hormones on the surface morphology of testicular cells in culture. Am J Anat. 1978 Jan;151(1):55–69. doi: 10.1002/aja.1001510106. [DOI] [PubMed] [Google Scholar]
  9. Kay A. B. "Helper" (CD4+) T cells and eosinophils in allergy and asthma. Am Rev Respir Dis. 1992 Feb;145(2 Pt 2):S22–S26. doi: 10.1164/ajrccm/145.2_Pt_2.S22. [DOI] [PubMed] [Google Scholar]
  10. Krug N., Frew A. J. The Th2 cell in asthma: initial expectations yet to be realised. Clin Exp Allergy. 1997 Feb;27(2):142–150. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lack G., Oshiba A., Bradley K. L., Loader J. E., Amran D., Larsen G. L., Gelfand E. W. Transfer of immediate hypersensitivity and airway hyperresponsiveness by IgE-positive B cells. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):1765–1773. doi: 10.1164/ajrccm.152.6.8520735. [DOI] [PubMed] [Google Scholar]
  13. Licorish K., Novey H. S., Kozak P., Fairshter R. D., Wilson A. F. Role of Alternaria and Penicillium spores in the pathogenesis of asthma. J Allergy Clin Immunol. 1985 Dec;76(6):819–825. doi: 10.1016/0091-6749(85)90755-9. [DOI] [PubMed] [Google Scholar]
  14. Mishra S. K., Ajello L., Ahearn D. G., Burge H. A., Kurup V. P., Pierson D. L., Price D. L., Samson R. A., Sandhu R. S., Shelton B. Environmental mycology and its importance to public health. J Med Vet Mycol. 1992;30 (Suppl 1):287–305. doi: 10.1080/02681219280000981. [DOI] [PubMed] [Google Scholar]
  15. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  16. Spengler J. D., Sexton K. Indoor air pollution: a public health perspective. Science. 1983 Jul 1;221(4605):9–17. doi: 10.1126/science.6857273. [DOI] [PubMed] [Google Scholar]
  17. Stewart G. A., Holt P. G. Immunogenicity and tolerogenicity of a major house dust mite allergen, Der p I from Dermatophagoides pteronyssinus, in mice and rats. Int Arch Allergy Appl Immunol. 1987;83(1):44–51. doi: 10.1159/000234329. [DOI] [PubMed] [Google Scholar]
  18. Strachan D. P. Moulds, mites and childhood asthma. Clin Exp Allergy. 1993 Oct;23(10):799–801. doi: 10.1111/j.1365-2222.1993.tb00256.x. [DOI] [PubMed] [Google Scholar]
  19. Van Herck H., De Boer S. F., Hesp A. P., Van Lith H. A., Baumans V., Beynen A. C. Orbital bleeding in rats while under diethylether anaesthesia does not influence telemetrically determined heart rate, body temperature, locomotor and eating activity when compared with anaesthesia alone. Lab Anim. 1997 Jul;31(3):271–278. doi: 10.1258/002367797780596284. [DOI] [PubMed] [Google Scholar]
  20. Verhoeff A. P., van Strien R. T., van Wijnen J. H., Brunekreef B. Damp housing and childhood respiratory symptoms: the role of sensitization to dust mites and molds. Am J Epidemiol. 1995 Jan 15;141(2):103–110. doi: 10.1093/oxfordjournals.aje.a117398. [DOI] [PubMed] [Google Scholar]
  21. Walker C., Virchow J. C., Jr, Bruijnzeel P. L., Blaser K. T cell subsets and their soluble products regulate eosinophilia in allergic and nonallergic asthma. J Immunol. 1991 Mar 15;146(6):1829–1835. [PubMed] [Google Scholar]
  22. Watson M. L., Smith D., Bourne A. D., Thompson R. C., Westwick J. Cytokines contribute to airway dysfunction in antigen-challenged guinea pigs: inhibition of airway hyperreactivity, pulmonary eosinophil accumulation, and tumor necrosis factor generation by pretreatment with an interleukin-1 receptor antagonist. Am J Respir Cell Mol Biol. 1993 Apr;8(4):365–369. doi: 10.1165/ajrcmb/8.4.365. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES