Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jan;65(1):227–235. doi: 10.1128/iai.65.1.227-235.1997

Development of antibody-secreting cells and antigen-specific T cells in cervical lymph nodes after intranasal immunization.

H Y Wu 1, E B Nikolova 1, K W Beagley 1, J H Eldridge 1, M W Russell 1
PMCID: PMC174580  PMID: 8975916

Abstract

Intranasal (i.n.) immunization with bacterial protein antigens coupled to cholera toxin B subunit (CTB) effectively induces mucosal, especially salivary immunoglobulin A (IgA), and nonmucosal antibody responses in mice. To examine the regional distribution of antigen-specific B and T cells after i.n. immunization, antibody-secreting cells and antigen-responsive T cells in cervical lymph nodes (CLN) were compared with those found after intraoral or subcutaneous (in the neck) administration of the same antigen and with T cells found in mesenteric lymph nodes (MLN) and spleen after intragastric immunization. The i.n. immunization induced predominantly IgA antibody-secreting cells in salivary glands and IgA and IgG antibody-secreting cells in the superficial and central CLN; these responses were quantitatively enhanced if the antigen was coupled to CTB. Intraoral immunization also induced IgA and IgG antibody-secreting cells in the superficial and central CLN, but only if intact cholera toxin was included as an adjuvant. In contrast, subcutaneous (neck) immunization induced IgG antibody-secreting cells mainly in the draining facial lymph nodes. CLN cell populations resembled those of MLN, except that CLN lymphocytes had higher proportions of T cells and lower proportions of B cells and a slightly higher CD4+/CD8+ ratio among T cells than the MLN lymphocytes did. T cells that proliferated in response to antigen in vitro were found especially in central CLN 2 days after i.n. immunization and persisted for up to 6 months, whereas after intragastric immunization, responsive T cells were not found in the MLN for up to 14 days. After culture with antigen in vitro, T cells from the superficial CLN of i.n. immunized mice secreted both gamma interferon and interleukin-4. Therefore, after i.n. immunization, superficial and central CLN represent sites of regional lymphocyte development, and the central CLN in particular appear to be sites where memory T cells persist.

Full Text

The Full Text of this article is available as a PDF (218.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beagley K. W., Eldridge J. H., Kiyono H., Everson M. P., Koopman W. J., Honjo T., McGhee J. R. Recombinant murine IL-5 induces high rate IgA synthesis in cycling IgA-positive Peyer's patch B cells. J Immunol. 1988 Sep 15;141(6):2035–2042. [PubMed] [Google Scholar]
  2. Bolduc C., Waterfield J. D., Deslauriers N. Tissue distribution and cytofluorometric analysis of oral mucosal T cells in the BALB/c mouse. Res Immunol. 1990 Jul-Aug;141(6):461–475. doi: 10.1016/0923-2494(90)90016-r. [DOI] [PubMed] [Google Scholar]
  3. Bourguin I., Chardès T., Bout D. Oral immunization with Toxoplasma gondii antigens in association with cholera toxin induces enhanced protective and cell-mediated immunity in C57BL/6 mice. Infect Immun. 1993 May;61(5):2082–2088. doi: 10.1128/iai.61.5.2082-2088.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brandtzaeg P., Halstensen T. S. Immunology and immunopathology of tonsils. Adv Otorhinolaryngol. 1992;47:64–75. doi: 10.1159/000421721. [DOI] [PubMed] [Google Scholar]
  5. Cherwinski H. M., Schumacher J. H., Brown K. D., Mosmann T. R. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med. 1987 Nov 1;166(5):1229–1244. doi: 10.1084/jem.166.5.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clarke C. J., Wilson A. D., Williams N. A., Stokes C. R. Mucosal priming of T-lymphocyte responses to fed protein antigens using cholera toxin as an adjuvant. Immunology. 1991 Mar;72(3):323–328. [PMC free article] [PubMed] [Google Scholar]
  7. Czerkinsky C., Russell M. W., Lycke N., Lindblad M., Holmgren J. Oral administration of a streptococcal antigen coupled to cholera toxin B subunit evokes strong antibody responses in salivary glands and extramucosal tissues. Infect Immun. 1989 Apr;57(4):1072–1077. doi: 10.1128/iai.57.4.1072-1077.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duncan D. D., Swain S. L. Role of antigen-presenting cells in the polarized development of helper T cell subsets: evidence for differential cytokine production by Th0 cells in response to antigen presentation by B cells and macrophages. Eur J Immunol. 1994 Oct;24(10):2506–2514. doi: 10.1002/eji.1830241037. [DOI] [PubMed] [Google Scholar]
  9. Elson C. O. Cholera toxin and its subunits as potential oral adjuvants. Curr Top Microbiol Immunol. 1989;146:29–33. doi: 10.1007/978-3-642-74529-4_3. [DOI] [PubMed] [Google Scholar]
  10. Gizurarson S., Tamura S., Kurata T., Hasiguchi K., Ogawa H. The effect of cholera toxin and cholera toxin B subunit on the nasal mucosal membrane. Vaccine. 1991 Nov;9(11):825–832. doi: 10.1016/0264-410x(91)90220-z. [DOI] [PubMed] [Google Scholar]
  11. Hajishengallis G., Michalek S. M., Russell M. W. Persistence of serum and salivary antibody responses after oral immunization with a bacterial protein antigen genetically linked to the A2/B subunits of cholera toxin. Infect Immun. 1996 Feb;64(2):665–667. doi: 10.1128/iai.64.2.665-667.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hameleers D. M., van der Ven I., Biewenga J., Sminia T. Mucosal and systemic antibody formation in the rat after intranasal administration of three different antigens. Immunol Cell Biol. 1991 Apr;69(Pt 2):119–125. doi: 10.1038/icb.1991.18. [DOI] [PubMed] [Google Scholar]
  13. Hameleers D. M., van der Ven I., Sminia T., Biewenga J. Anti-TNP-forming cells in rats after different routes of priming with TNP-LPS followed by intranasal boosting with the same antigen. Res Immunol. 1990 Jul-Aug;141(6):515–528. doi: 10.1016/0923-2494(90)90020-y. [DOI] [PubMed] [Google Scholar]
  14. Hazama M., Mayumi-Aono A., Miyazaki T., Hinuma S., Fujisawa Y. Intranasal immunization against herpes simplex virus infection by using a recombinant glycoprotein D fused with immunomodulating proteins, the B subunit of Escherichia coli heat-labile enterotoxin and interleukin-2. Immunology. 1993 Apr;78(4):643–649. [PMC free article] [PubMed] [Google Scholar]
  15. Heinzel F. P., Sadick M. D., Holaday B. J., Coffman R. L., Locksley R. M. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med. 1989 Jan 1;169(1):59–72. doi: 10.1084/jem.169.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hu-Li J., Ohara J., Watson C., Tsang W., Paul W. E. Derivation of a T cell line that is highly responsive to IL-4 and IL-2 (CT.4R) and of an IL-2 hyporesponsive mutant of that line (CT.4S). J Immunol. 1989 Feb 1;142(3):800–807. [PubMed] [Google Scholar]
  17. Kikuta K., Hirabayashi Y., Nagamine T., Aizawa C., Ueno Y., Oya A., Kurata T., Tamura S. Cross-protection against influenza B type virus infection by intranasal inoculation of the HA vaccines combined with cholera toxin B subunit. Vaccine. 1990 Dec;8(6):595–599. doi: 10.1016/0264-410x(90)90016-f. [DOI] [PubMed] [Google Scholar]
  18. Koornstra P. J., de Jong F. I., Vlek L. F., Marres E. H., van Breda Vriesman P. J. The Waldeyer ring equivalent in the rat. A model for analysis of oronasopharyngeal immune responses. Acta Otolaryngol. 1991;111(3):591–599. doi: 10.3109/00016489109138388. [DOI] [PubMed] [Google Scholar]
  19. Kuper C. F., Koornstra P. J., Hameleers D. M., Biewenga J., Spit B. J., Duijvestijn A. M., van Breda Vriesman P. J., Sminia T. The role of nasopharyngeal lymphoid tissue. Immunol Today. 1992 Jun;13(6):219–224. doi: 10.1016/0167-5699(92)90158-4. [DOI] [PubMed] [Google Scholar]
  20. Liang X. P., Lamm M. E., Nedrud J. G. Cholera toxin as a mucosal adjuvant. Glutaraldehyde treatment dissociates adjuvanticity from toxicity. J Immunol. 1989 Jul 15;143(2):484–490. [PubMed] [Google Scholar]
  21. Lycke N., Holmgren J. Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunology. 1986 Oct;59(2):301–308. [PMC free article] [PubMed] [Google Scholar]
  22. Mestecky J. The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol. 1987 Jul;7(4):265–276. doi: 10.1007/BF00915547. [DOI] [PubMed] [Google Scholar]
  23. Moldoveanu Z., Clements M. L., Prince S. J., Murphy B. R., Mestecky J. Human immune responses to influenza virus vaccines administered by systemic or mucosal routes. Vaccine. 1995 Aug;13(11):1006–1012. doi: 10.1016/0264-410x(95)00016-t. [DOI] [PubMed] [Google Scholar]
  24. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  25. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  26. Nair P. N., Rossinsky K. Organization of lymphoid tissue in the tonsilla lingualis. An ultrastructural study in Macaca fascicularis (Primates, Cercopithecoidea). Cell Tissue Res. 1985;240(1):233–242. doi: 10.1007/BF00217579. [DOI] [PubMed] [Google Scholar]
  27. Nair P. N., Schroeder H. E. Duct-associated lymphoid tissue (DALT) of minor salivary glands and mucosal immunity. Immunology. 1986 Feb;57(2):171–180. [PMC free article] [PubMed] [Google Scholar]
  28. Ogra P. L. Effect of tonsillectomy and adenoidectomy on nasopharyngeal antibody response to poliovirus. N Engl J Med. 1971 Jan 14;284(2):59–64. doi: 10.1056/NEJM197101142840201. [DOI] [PubMed] [Google Scholar]
  29. Quiding M., Lakew M., Granström G., Nordström I., Holmgren J., Czerkinsky C. Induction of specific antibody responses in the human nasopharyngeal mucosa. Adv Exp Med Biol. 1995;371B:1445–1450. [PubMed] [Google Scholar]
  30. Reynolds D. S., Boom W. H., Abbas A. K. Inhibition of B lymphocyte activation by interferon-gamma. J Immunol. 1987 Aug 1;139(3):767–773. [PubMed] [Google Scholar]
  31. Russell M. W., Bergmeier L. A., Zanders E. D., Lehner T. Protein antigens of Streptococcus mutans: purification and properties of a double antigen and its protease-resistant component. Infect Immun. 1980 May;28(2):486–493. doi: 10.1128/iai.28.2.486-493.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Russell M. W., Wu H. Y. Distribution, persistence, and recall of serum and salivary antibody responses to peroral immunization with protein antigen I/II of Streptococcus mutans coupled to the cholera toxin B subunit. Infect Immun. 1991 Nov;59(11):4061–4070. doi: 10.1128/iai.59.11.4061-4070.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Russell M. W., Wu H. Y., White P. L., Takahashi I., Okahashi N., Koga T. Peroral immunization with a cholera toxin-linked bacterial protein antigen and synthetic peptide. Adv Exp Med Biol. 1992;327:199–207. doi: 10.1007/978-1-4615-3410-5_22. [DOI] [PubMed] [Google Scholar]
  34. Scadding G. K. Immunology of the tonsil: a review. J R Soc Med. 1990 Feb;83(2):104–107. doi: 10.1177/014107689008300216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schumacher J. H., O'Garra A., Shrader B., van Kimmenade A., Bond M. W., Mosmann T. R., Coffman R. L. The characterization of four monoclonal antibodies specific for mouse IL-5 and development of mouse and human IL-5 enzyme-linked immunosorbent. J Immunol. 1988 Sep 1;141(5):1576–1581. [PubMed] [Google Scholar]
  36. Snider D. P., Marshall J. S., Perdue M. H., Liang H. Production of IgE antibody and allergic sensitization of intestinal and peripheral tissues after oral immunization with protein Ag and cholera toxin. J Immunol. 1994 Jul 15;153(2):647–657. [PubMed] [Google Scholar]
  37. Spit B. J., Hendriksen E. G., Bruijntjes J. P., Kuper C. F. Nasal lymphoid tissue in the rat. Cell Tissue Res. 1989 Jan;255(1):193–198. doi: 10.1007/BF00229081. [DOI] [PubMed] [Google Scholar]
  38. Takahashi I., Okahashi N., Kanamoto T., Asakawa H., Koga T. Intranasal immunization of mice with recombinant protein antigen of serotype c Streptococcus mutans and cholera toxin B subunit. Arch Oral Biol. 1990;35(6):475–477. doi: 10.1016/0003-9969(90)90211-r. [DOI] [PubMed] [Google Scholar]
  39. Tamura S. I., Asanuma H., Ito Y., Hirabayashi Y., Suzuki Y., Nagamine T., Aizawa C., Kurata T., Oya A. Superior cross-protective effect of nasal vaccination to subcutaneous inoculation with influenza hemagglutinin vaccine. Eur J Immunol. 1992 Feb;22(2):477–481. doi: 10.1002/eji.1830220228. [DOI] [PubMed] [Google Scholar]
  40. Tilney N. L. Patterns of lymphatic drainage in the adult laboratory rat. J Anat. 1971 Sep;109(Pt 3):369–383. [PMC free article] [PubMed] [Google Scholar]
  41. Walsh E. E. Mucosal immunization with a subunit respiratory syncytial virus vaccine in mice. Vaccine. 1993;11(11):1135–1138. doi: 10.1016/0264-410x(93)90075-9. [DOI] [PubMed] [Google Scholar]
  42. Wu H. Y., Nikolova E. B., Beagley K. W., Russell M. W. Induction of antibody-secreting cells and T-helper and memory cells in murine nasal lymphoid tissue. Immunology. 1996 Aug;88(4):493–500. doi: 10.1046/j.1365-2567.1996.d01-690.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wu H. Y., Russell M. W. Induction of mucosal immunity by intranasal application of a streptococcal surface protein antigen with the cholera toxin B subunit. Infect Immun. 1993 Jan;61(1):314–322. doi: 10.1128/iai.61.1.314-322.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. van der Ven I., Sminia T. The development and structure of mouse nasal-associated lymphoid tissue: an immuno- and enzyme-histochemical study. Reg Immunol. 1993 Mar-Apr;5(2):69–75. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES