Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Jan;65(1):293–297. doi: 10.1128/iai.65.1.293-297.1997

Identification of CD14 residues involved in specific lipopolysaccharide recognition.

R A Shapiro 1, M D Cunningham 1, K Ratcliffe 1, C Seachord 1, J Blake 1, J Bajorath 1, A Aruffo 1, R P Darveau 1
PMCID: PMC174590  PMID: 8975926

Abstract

CD14 is a key molecule responsible for the innate host inflammatory response to microbial infection. It is able to bind a wide variety of microbial ligands and facilitate the activation of both myeloid and nonmyeloid cells. However, its specific contribution to the innate recognition of bacteria is not known. Presently there is no information on the contribution of individual CD14 residues to Escherichia coli lipopolysaccharide (LPS) binding or on the molecular basis of the interaction between CD14 and LPS from other bacteria. LPS obtained from Porphyromonas gingivalis, a bacterium associated with chronic inflammatory disease, binds CD14 and activates myeloid cells but does not facilitate the activation of nonmyeloid cells. The transfer and binding of these two LPS species to soluble CD14 recombinant globulin proteins with single point mutations was examined. Functional activity of the mutant proteins was monitored by E-selectin expression on human umbilical cord endothelial cells. The analysis identified a charge reversal mutation in a single residue, E47, that demonstrated selective binding to E. coli LPS but not to P. gingivalis LPS. E-selectin activation assays indicated that proteins with mutations at position E47 maintained their structural integrity. Other mutations, including a charge reversal mutation of residue E58, did not significantly reduce the binding of either LPS ligand or the ability of the molecule to facilitate E-selectin activation. These data demonstrate that CD14 can selectively recognize different LPS ligands.

Full Text

The Full Text of this article is available as a PDF (204.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cunningham M. D., Seachord C., Ratcliffe K., Bainbridge B., Aruffo A., Darveau R. P. Helicobacter pylori and Porphyromonas gingivalis lipopolysaccharides are poorly transferred to recombinant soluble CD14. Infect Immun. 1996 Sep;64(9):3601–3608. doi: 10.1128/iai.64.9.3601-3608.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Darveau R. P., Cunningham M. D., Bailey T., Seachord C., Ratcliffe K., Bainbridge B., Dietsch M., Page R. C., Aruffo A. Ability of bacteria associated with chronic inflammatory disease to stimulate E-selectin expression and promote neutrophil adhesion. Infect Immun. 1995 Apr;63(4):1311–1317. doi: 10.1128/iai.63.4.1311-1317.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Delude R. L., Savedra R., Jr, Zhao H., Thieringer R., Yamamoto S., Fenton M. J., Golenbock D. T. CD14 enhances cellular responses to endotoxin without imparting ligand-specific recognition. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9288–9292. doi: 10.1073/pnas.92.20.9288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ferrero E., Hsieh C. L., Francke U., Goyert S. M. CD14 is a member of the family of leucine-rich proteins and is encoded by a gene syntenic with multiple receptor genes. J Immunol. 1990 Jul 1;145(1):331–336. [PubMed] [Google Scholar]
  5. Forman D., Newell D. G., Fullerton F., Yarnell J. W., Stacey A. R., Wald N., Sitas F. Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. BMJ. 1991 Jun 1;302(6788):1302–1305. doi: 10.1136/bmj.302.6788.1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frey E. A., Miller D. S., Jahr T. G., Sundan A., Bazil V., Espevik T., Finlay B. B., Wright S. D. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med. 1992 Dec 1;176(6):1665–1671. doi: 10.1084/jem.176.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gausepohl H., Boulin C., Kraft M., Frank R. W. Automated multiple peptide synthesis. Pept Res. 1992 Nov-Dec;5(6):315–320. [PubMed] [Google Scholar]
  8. Haziot A., Ferrero E., Köntgen F., Hijiya N., Yamamoto S., Silver J., Stewart C. L., Goyert S. M. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity. 1996 Apr;4(4):407–414. doi: 10.1016/s1074-7613(00)80254-x. [DOI] [PubMed] [Google Scholar]
  9. Hollenbaugh D., Grosmaire L. S., Kullas C. D., Chalupny N. J., Braesch-Andersen S., Noelle R. J., Stamenkovic I., Ledbetter J. A., Aruffo A. The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J. 1992 Dec;11(12):4313–4321. doi: 10.1002/j.1460-2075.1992.tb05530.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holt S. C., Ebersole J., Felton J., Brunsvold M., Kornman K. S. Implantation of Bacteroides gingivalis in nonhuman primates initiates progression of periodontitis. Science. 1988 Jan 1;239(4835):55–57. doi: 10.1126/science.3336774. [DOI] [PubMed] [Google Scholar]
  11. Janeway C. A., Jr The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today. 1992 Jan;13(1):11–16. doi: 10.1016/0167-5699(92)90198-G. [DOI] [PubMed] [Google Scholar]
  12. Juan T. S., Hailman E., Kelley M. J., Busse L. A., Davy E., Empig C. J., Narhi L. O., Wright S. D., Lichenstein H. S. Identification of a lipopolysaccharide binding domain in CD14 between amino acids 57 and 64. J Biol Chem. 1995 Mar 10;270(10):5219–5224. doi: 10.1074/jbc.270.10.5219. [DOI] [PubMed] [Google Scholar]
  13. Juan T. S., Kelley M. J., Johnson D. A., Busse L. A., Hailman E., Wright S. D., Lichenstein H. S. Soluble CD14 truncated at amino acid 152 binds lipopolysaccharide (LPS) and enables cellular response to LPS. J Biol Chem. 1995 Jan 20;270(3):1382–1387. doi: 10.1074/jbc.270.3.1382. [DOI] [PubMed] [Google Scholar]
  14. Kusunoki T., Hailman E., Juan T. S., Lichenstein H. S., Wright S. D. Molecules from Staphylococcus aureus that bind CD14 and stimulate innate immune responses. J Exp Med. 1995 Dec 1;182(6):1673–1682. doi: 10.1084/jem.182.6.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McGinley M. D., Narhi L. O., Kelley M. J., Davy E., Robinson J., Rohde M. F., Wright S. D., Lichenstein H. S. CD14: physical properties and identification of an exposed site that is protected by lipopolysaccharide. J Biol Chem. 1995 Mar 10;270(10):5213–5218. doi: 10.1074/jbc.270.10.5213. [DOI] [PubMed] [Google Scholar]
  16. Ogawa T. Chemical structure of lipid A from Porphyromonas (Bacteroides) gingivalis lipopolysaccharide. FEBS Lett. 1993 Oct 11;332(1-2):197–201. doi: 10.1016/0014-5793(93)80512-s. [DOI] [PubMed] [Google Scholar]
  17. Ogawa T., Uchida H., Amino K. Immunobiological activities of chemically defined lipid A from lipopolysaccharides of Porphyromonas gingivalis. Microbiology. 1994 May;140(Pt 5):1209–1216. doi: 10.1099/13500872-140-5-1209. [DOI] [PubMed] [Google Scholar]
  18. Pugin J., Heumann I. D., Tomasz A., Kravchenko V. V., Akamatsu Y., Nishijima M., Glauser M. P., Tobias P. S., Ulevitch R. J. CD14 is a pattern recognition receptor. Immunity. 1994 Sep;1(6):509–516. doi: 10.1016/1074-7613(94)90093-0. [DOI] [PubMed] [Google Scholar]
  19. Pugin J., Schürer-Maly C. C., Leturcq D., Moriarty A., Ulevitch R. J., Tobias P. S. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2744–2748. doi: 10.1073/pnas.90.7.2744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Raetz C. R. Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal transduction. J Bacteriol. 1993 Sep;175(18):5745–5753. doi: 10.1128/jb.175.18.5745-5753.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shapira L., Takashiba S., Amar S., Van Dyke T. E. Porphyromonas gingivalis lipopolysaccharide stimulation of human monocytes: dependence on serum and CD14 receptor. Oral Microbiol Immunol. 1994 Apr;9(2):112–117. doi: 10.1111/j.1399-302x.1994.tb00044.x. [DOI] [PubMed] [Google Scholar]
  22. Tobias P. S., Soldau K., Gegner J. A., Mintz D., Ulevitch R. J. Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem. 1995 May 5;270(18):10482–10488. doi: 10.1074/jbc.270.18.10482. [DOI] [PubMed] [Google Scholar]
  23. Ulevitch R. J., Tobias P. S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol. 1995;13:437–457. doi: 10.1146/annurev.iy.13.040195.002253. [DOI] [PubMed] [Google Scholar]
  24. Viriyakosol S., Kirkland T. N. A region of human CD14 required for lipopolysaccharide binding. J Biol Chem. 1995 Jan 6;270(1):361–368. doi: 10.1074/jbc.270.1.361. [DOI] [PubMed] [Google Scholar]
  25. Wright S. D. CD14 and innate recognition of bacteria. J Immunol. 1995 Jul 1;155(1):6–8. [PubMed] [Google Scholar]
  26. Yu B., Wright S. D. Catalytic properties of lipopolysaccharide (LPS) binding protein. Transfer of LPS to soluble CD14. J Biol Chem. 1996 Feb 23;271(8):4100–4105. doi: 10.1074/jbc.271.8.4100. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES