Skip to main content
Thorax logoLink to Thorax
. 2001 Nov;56(11):839–844. doi: 10.1136/thorax.56.11.839

Body mass, fat percentage, and fat free mass as reference variables for lung function: effects on terms for age and sex

J Cotes 1, D Chinn 1, J Reed 1
PMCID: PMC1745971  PMID: 11641507

Abstract

BACKGROUND—Sex specific cross sectional reference values for lung function indices usually employ a linear model with terms for age and stature. The effects of also matching for body mass index (BMI= mass/stature2) or its components, fat percentage of body mass (fat%) and fat free mass index (FFMI = fat free mass/stature2) were studied.
METHODS—The subjects were 458 asymptomatic male and female non-smokers (383 men) and 22 female ex-smokers. Measurements were made of ventilatory capacity, lung volumes, transfer factor (diffusing capacity, single breath CO method), and body composition (skinfold method). Linear and proportional regression models were used.
RESULTS—Terms for fat% and FFMI significantly improved the accuracy of reference values for all the primary lung function indices. The improvements in subjects with atypical physiques (fat% and FFMI at the ends of the distributions for the subjects) were in the range 0.3-2.3 SD compared with conventional regression equations. The new partial regression coefficients on age were independent of age related changes in body fat. The coefficient for total lung capacity (TLC) on age in men was now positive. Most differences between the sexes were eliminated. A term for BMI improved the descriptions of subdivisions of TLC but lacked the other advantages.
CONCLUSION—Allowance for fat% and FFMI increases the accuracy of reference equations for lung function, particularly for subjects with a lot of fat and little muscle or vice versa. Allowance for BMI is less informative.



Full Text

The Full Text of this article is available as a PDF (134.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amrein R., Keller R., Joos H., Herzog H. Valeurs théoriques nouvelles de l'exploration de la fonction ventilatoire du poumon. Bull Physiopathol Respir (Nancy) 1970 Apr-Jun;6(2):317–349. [PubMed] [Google Scholar]
  2. Ashwell M., Cole T. J., Dixon A. K. Obesity: new insight into the anthropometric classification of fat distribution shown by computed tomography. Br Med J (Clin Res Ed) 1985 Jun 8;290(6483):1692–1694. doi: 10.1136/bmj.290.6483.1692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen Y., Horne S. L., Dosman J. A. Body weight and weight gain related to pulmonary function decline in adults: a six year follow up study. Thorax. 1993 Apr;48(4):375–380. doi: 10.1136/thx.48.4.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chinn D. J., Cotes J. E., Flowers R., Marks A. M., Reed J. W. Transfer factor (diffusing capacity) standardized for alveolar volume: validation, reference values and applications of a new linear model to replace KCO (TL/VA) Eur Respir J. 1996 Jun;9(6):1269–1277. doi: 10.1183/09031936.96.09061269. [DOI] [PubMed] [Google Scholar]
  5. Chinn D. J., Cotes J. E., Reed J. W. Longitudinal effects of change in body mass on measurements of ventilatory capacity. Thorax. 1996 Jul;51(7):699–704. doi: 10.1136/thx.51.7.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chinn D. J., Cotes J. E., el Gamal F. M., Wollaston J. F. Respiratory health of young shipyard welders and other tradesmen studied cross sectionally and longitudinally. Occup Environ Med. 1995 Jan;52(1):33–42. doi: 10.1136/oem.52.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cole T. J. The influence of height on the decline in ventilatory function. Int J Epidemiol. 1974 Jun;3(2):145–152. doi: 10.1093/ije/3.2.145. [DOI] [PubMed] [Google Scholar]
  8. Cotes J. E., Dabbs J. M., Hall A. M., Heywood C., Laurence K. M. Sitting height, fat-free mass and body fat as reference variables for lung function in healthy British children: comparison with stature. Ann Hum Biol. 1979 Jul-Aug;6(4):307–314. doi: 10.1080/03014467900003691. [DOI] [PubMed] [Google Scholar]
  9. Crapo R. O., Morris A. H., Gardner R. M. Reference spirometric values using techniques and equipment that meet ATS recommendations. Am Rev Respir Dis. 1981 Jun;123(6):659–664. doi: 10.1164/arrd.1981.123.6.659. [DOI] [PubMed] [Google Scholar]
  10. Davey I. S., Cotes J. E., Reed J. W. Relationship of ventilatory capacity to hyperbaric exposure in divers. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jun;56(6):1655–1658. doi: 10.1152/jappl.1984.56.6.1655. [DOI] [PubMed] [Google Scholar]
  11. Dirksen A., Groth S. Calculation of reference values for lung function tests. Bull Eur Physiopathol Respir. 1986 May-Jun;22(3):231–237. [PubMed] [Google Scholar]
  12. Durnin J. V., Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974 Jul;32(1):77–97. doi: 10.1079/bjn19740060. [DOI] [PubMed] [Google Scholar]
  13. Gibson G. J., Pride N. B., O'cain C., Quagliato R. Sex and age differences in pulmonary mechanics in normal nonsmoking subjects. J Appl Physiol. 1976 Jul;41(1):20–25. doi: 10.1152/jappl.1976.41.1.20. [DOI] [PubMed] [Google Scholar]
  14. Hall A. M., Heywood C., Cotes J. E. Lung function in healthy British women. Thorax. 1979 Jun;34(3):359–365. doi: 10.1136/thx.34.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holmgren A., Astrand P. O. DL and the dimensions and functional capacities of the O2 transport system in humans. J Appl Physiol. 1966 Sep;21(5):1463–1470. doi: 10.1152/jappl.1966.21.5.1463. [DOI] [PubMed] [Google Scholar]
  16. Jenkins S. C., Moxham J. The effects of mild obesity on lung function. Respir Med. 1991 Jul;85(4):309–311. doi: 10.1016/s0954-6111(06)80102-2. [DOI] [PubMed] [Google Scholar]
  17. Lazarus R., Gore C. J., Booth M., Owen N. Effects of body composition and fat distribution on ventilatory function in adults. Am J Clin Nutr. 1998 Jul;68(1):35–41. doi: 10.1093/ajcn/68.1.35. [DOI] [PubMed] [Google Scholar]
  18. Leith D. E., Bradley M. Ventilatory muscle strength and endurance training. J Appl Physiol. 1976 Oct;41(4):508–516. doi: 10.1152/jappl.1976.41.4.508. [DOI] [PubMed] [Google Scholar]
  19. McClaran S. R., Harms C. A., Pegelow D. F., Dempsey J. A. Smaller lungs in women affect exercise hyperpnea. J Appl Physiol (1985) 1998 Jun;84(6):1872–1881. doi: 10.1152/jappl.1998.84.6.1872. [DOI] [PubMed] [Google Scholar]
  20. Mengesha Y. A., Mekonnen Y. Spirometric lung function tests in normal non-smoking Ethiopian men and women. Thorax. 1985 Jun;40(6):465–468. doi: 10.1136/thx.40.6.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pistelli F., Bottai M., Viegi G., Di Pede F., Carrozzi L., Baldacci S., Pedreschi M., Giuntini C. Smooth reference equations for slow vital capacity and flow-volume curve indexes. Am J Respir Crit Care Med. 2000 Mar;161(3 Pt 1):899–905. doi: 10.1164/ajrccm.161.3.9906006. [DOI] [PubMed] [Google Scholar]
  22. Rosen M. J., Sorkin J. D., Goldberg A. P., Hagberg J. M., Katzel L. I. Predictors of age-associated decline in maximal aerobic capacity: a comparison of four statistical models. J Appl Physiol (1985) 1998 Jun;84(6):2163–2170. doi: 10.1152/jappl.1998.84.6.2163. [DOI] [PubMed] [Google Scholar]
  23. Schoenberg J. B., Beck G. J., Bouhuys A. Growth and decay of pulmonary function in healthy blacks and whites. Respir Physiol. 1978 Jun;33(3):367–393. doi: 10.1016/0034-5687(78)90063-4. [DOI] [PubMed] [Google Scholar]
  24. Sue D. Y. Obesity and pulmonary function: more or less? Chest. 1997 Apr;111(4):844–845. doi: 10.1378/chest.111.4.844. [DOI] [PubMed] [Google Scholar]
  25. Weiner P., Waizman J., Weiner M., Rabner M., Magadle R., Zamir D. Influence of excessive weight loss after gastroplasty for morbid obesity on respiratory muscle performance. Thorax. 1998 Jan;53(1):39–42. doi: 10.1136/thx.53.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES