Skip to main content
Thorax logoLink to Thorax
. 2001 May;56(5):341–344. doi: 10.1136/thorax.56.5.341

Degranulation patterns of eosinophil granulocytes as determinants of eosinophil driven disease

J Erjefalt 1, L Greiff 1, M Andersson 1, E Adelroth 1, P Jeffery 1, C Persson 1
PMCID: PMC1746051  PMID: 11312400

Abstract

BACKGROUND—Degranulation of eosinophils in target tissues is considered a key pathogenic event in major chronic eosinophilic diseases. However, because of a lack of appropriate methods, little is known about degranulation of eosinophils in common eosinophilic diseases.
METHODS—Using transmission electron microscopic (TEM) analysis, a novel approach has been devised and validated to quantify eosinophil degranulation in human tissues (assessed in individual cells as percentage granules with structural signs of protein release). Biopsy specimens from patients with inflammatory bowel disease, allergic rhinitis, asthma, and nasal polyposis were evaluated.
RESULTS—All conditions displayed a similar degree of local tissue eosinophilia, with no differences being observed in eosinophil numbers in the airway mucosa of patients with airway diseases and the colonic mucosa of those with inflammatory bowel disease (IBD). In contrast, marked differences in the mean (SE) extent of eosinophil degranulation were observed between the patient groups; IBD 9.3(1.4)% altered granules, artificial and natural allergen challenge induced allergic rhinitis 67.8 (6.8)% and 86.6 (3.0)%, respectively, asthma 18.1 (2)%, and nasal polyposis 46.6 (7.6)%.
CONCLUSIONS—This study provides the first quantitative data which show that different eosinophilic conditions, despite having similar numbers of tissue eosinophils, may exhibit markedly different degranulation patterns. The present assessment of piecemeal degranulation would thus make it possible to delineate the conditions under which eosinophils are likely to contribute to disease processes. This novel type of analysis may also guide and validate anti-eosinophilic treatment options.



Full Text

The Full Text of this article is available as a PDF (169.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng J. F., Ott N. L., Peterson E. A., George T. J., Hukee M. J., Gleich G. J., Leiferman K. M. Dermal eosinophils in atopic dermatitis undergo cytolytic degeneration. J Allergy Clin Immunol. 1997 May;99(5):683–692. doi: 10.1016/s0091-6749(97)70031-9. [DOI] [PubMed] [Google Scholar]
  2. Erjefält J. S., Andersson M., Greiff L., Korsgren M., Gizycki M., Jeffery P. K., Persson G. A. Cytolysis and piecemeal degranulation as distinct modes of activation of airway mucosal eosinophils. J Allergy Clin Immunol. 1998 Aug;102(2):286–294. doi: 10.1016/s0091-6749(98)70098-3. [DOI] [PubMed] [Google Scholar]
  3. Erjefält J. S., Greiff L., Andersson M., Matsson E., Petersen H., Linden M., Ansari T., Jeffery P. K., Persson C. G. Allergen-induced eosinophil cytolysis is a primary mechanism for granule protein release in human upper airways. Am J Respir Crit Care Med. 1999 Jul;160(1):304–312. doi: 10.1164/ajrccm.160.1.9809048. [DOI] [PubMed] [Google Scholar]
  4. Erjefält J. S., Persson C. G. Airway epithelial repair: breathtakingly quick and multipotentially pathogenic. Thorax. 1997 Nov;52(11):1010–1012. doi: 10.1136/thx.52.11.1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Erjefält J. S., Persson C. G. New aspects of degranulation and fates of airway mucosal eosinophils. Am J Respir Crit Care Med. 2000 Jun;161(6):2074–2085. doi: 10.1164/ajrccm.161.6.9906085. [DOI] [PubMed] [Google Scholar]
  6. Giembycz M. A., Lindsay M. A. Pharmacology of the eosinophil. Pharmacol Rev. 1999 Jun;51(2):213–340. [PubMed] [Google Scholar]
  7. Gleich G. J., Motojima S., Frigas E., Kephart G. M., Fujisawa T., Kravis L. P. The eosinophilic leukocyte and the pathology of fatal bronchial asthma: evidence for pathologic heterogeneity. J Allergy Clin Immunol. 1987 Sep;80(3 Pt 2):412–415. doi: 10.1016/0091-6749(87)90063-7. [DOI] [PubMed] [Google Scholar]
  8. Jahnsen F. L., Brandtzaeg P., Halstensen T. S. Monoclonal antibody EG2 does not provide reliable immunohistochemical discrimination between resting and activated eosinophils. J Immunol Methods. 1994 Sep 30;175(1):23–36. doi: 10.1016/0022-1759(94)90328-x. [DOI] [PubMed] [Google Scholar]
  9. Jeffery P. K., Godfrey R. W., Adelroth E., Nelson F., Rogers A., Johansson S. A. Effects of treatment on airway inflammation and thickening of basement membrane reticular collagen in asthma. A quantitative light and electron microscopic study. Am Rev Respir Dis. 1992 Apr;145(4 Pt 1):890–899. doi: 10.1164/ajrccm/145.4_Pt_1.890. [DOI] [PubMed] [Google Scholar]
  10. Kita H., Weiler D. A., Abu-Ghazaleh R., Sanderson C. J., Gleich G. J. Release of granule proteins from eosinophils cultured with IL-5. J Immunol. 1992 Jul 15;149(2):629–635. [PubMed] [Google Scholar]
  11. Kroegel C., Dewar A., Yukawa T., Venge P., Barnes P. J., Chung K. F. Ultrastructural characterization of platelet-activating factor-stimulated human eosinophils from patients with asthma. Clin Sci (Lond) 1993 Apr;84(4):391–399. doi: 10.1042/cs0840391. [DOI] [PubMed] [Google Scholar]
  12. Persson C. G. Centennial notions of asthma as an eosinophilic, desquamative, exudative, and steroid-sensitive disease. Lancet. 1997 Oct 4;350(9083):1021–1024. doi: 10.1016/s0140-6736(96)02335-5. [DOI] [PubMed] [Google Scholar]
  13. Persson C. G., Erjefält J. S. Eosinophil lysis and free granules: an in vivo paradigm for cell activation and drug development. Trends Pharmacol Sci. 1997 Apr;18(4):117–123. doi: 10.1016/s0165-6147(97)01042-0. [DOI] [PubMed] [Google Scholar]
  14. Weller P. F. Human eosinophils. J Allergy Clin Immunol. 1997 Sep;100(3):283–287. doi: 10.1016/s0091-6749(97)70237-9. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES