Abstract
We recently identified phospholipase activity as a potential virulence factor of Cryptococcus neoformans. We have now defined the nature of the phospholipase activity produced by a clinical isolate of C. neoformans var. neoformans, under native conditions, by 1H and 31P nuclear magnetic resonance (NMR) spectroscopy and thin-layer chromatography (TLC) of radiolabelled substrates. Glycerophosphocholine was identified by NMR spectroscopy as the sole phospholipid degradation product of the reaction between substrate phosphatidylcholine (PC) and cryptococcal culture supernatants indicating the presence of phospholipase B (PLB). No lysophosphatidylcholine (lyso-PC) or products indicative of phospholipase C, phospholipase D, or other lipase activity were identified. Use of PC and lyso-PC containing radiolabelled acyl chains and separation of products by TLC confirmed the PLB and lysophospholipase (LPL) activities. Lysophospholipase transacylase (LPTA) activity was identified by the formation of radioactive PC from lyso-PC. Extracellular enzyme production was maximal after 6 to 10 h in fresh medium. Assay conditions were optimized for pH, linearity with time, enzyme concentration, and saturation by substrates to allow comparison with phospholipases from other organisms. LPL activity was 10- to 20-fold greater than PLB activity, with mean (+/- standard deviation) specific activities of 34.9 +/- 7.9 and 3.18 +/- 0.2 micromol of substrate hydrolyzed per min per mg of protein, respectively. The response of PLB to increasing substrate concentrations was bimodal, whereas inhibition of LPL and LPTA activities occurred at concentrations of substrate lyso-PC greater than 200 microM. Enzyme activities were stable at acid pH (3.8), with pH optima of 3.5 to 4.5. Activities were unchanged in the presence of exogenous serine protease inhibitors, divalent cations, and EDTA. We conclude that C. neoformans produces highly active extracellular PLB, LPL, and LPTA under native conditions.
Full Text
The Full Text of this article is available as a PDF (229.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agar N. S., Rae C. D., Chapman B. E., Kuchel P. W. 1H NMR spectroscopic survey of plasma and erythrocytes from selected marsupials and domestic animals of Australia. Comp Biochem Physiol B. 1991;99(3):575–597. doi: 10.1016/0305-0491(91)90340-j. [DOI] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Banno Y., Yamada T., Nozawa Y. Secreted phospholipases of the dimorphic fungus, Candida albicans; separation of three enzymes and some biological properties. Sabouraudia. 1985 Feb;23(1):47–54. doi: 10.1080/00362178585380081. [DOI] [PubMed] [Google Scholar]
- Barrett-Bee K., Hayes Y., Wilson R. G., Ryley J. F. A comparison of phospholipase activity, cellular adherence and pathogenicity of yeasts. J Gen Microbiol. 1985 May;131(5):1217–1221. doi: 10.1099/00221287-131-5-1217. [DOI] [PubMed] [Google Scholar]
- Breen J. F., Lee I. C., Vogel F. R., Friedman H. Cryptococcal capsular polysaccharide-induced modulation of murine immune responses. Infect Immun. 1982 Apr;36(1):47–51. doi: 10.1128/iai.36.1.47-51.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brueske C. H. Proteolytic activity of a clinical isolate of Cryptococcus neoformans. J Clin Microbiol. 1986 Mar;23(3):631–633. doi: 10.1128/jcm.23.3.631-633.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherniak R., Sundstrom J. B. Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infect Immun. 1994 May;62(5):1507–1512. doi: 10.1128/iai.62.5.1507-1512.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chuck S. L., Sande M. A. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med. 1989 Sep 21;321(12):794–799. doi: 10.1056/NEJM198909213211205. [DOI] [PubMed] [Google Scholar]
- Fromtling R. A., Shadomy H. J., Jacobson E. S. Decreased virulence in stable, acapsular mutants of cryptococcus neoformans. Mycopathologia. 1982 Jul 23;79(1):23–29. doi: 10.1007/BF00636177. [DOI] [PubMed] [Google Scholar]
- Ibrahim A. S., Mirbod F., Filler S. G., Banno Y., Cole G. T., Kitajima Y., Edwards J. E., Jr, Nozawa Y., Ghannoum M. A. Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun. 1995 May;63(5):1993–1998. doi: 10.1128/iai.63.5.1993-1998.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawasaki N., Saito K. Purification and some properties of lysophospholipase from Penicillium notatum. Biochim Biophys Acta. 1973 Feb 14;296(2):426–430. [PubMed] [Google Scholar]
- Kwon-Chung K. J., Edman J. C., Wickes B. L. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun. 1992 Feb;60(2):602–605. doi: 10.1128/iai.60.2.602-605.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwon-Chung K. J., Polacheck I., Popkin T. J. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol. 1982 Jun;150(3):1414–1421. doi: 10.1128/jb.150.3.1414-1421.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K. S., Patton J. L., Fido M., Hines L. K., Kohlwein S. D., Paltauf F., Henry S. A., Levin D. E. The Saccharomyces cerevisiae PLB1 gene encodes a protein required for lysophospholipase and phospholipase B activity. J Biol Chem. 1994 Aug 5;269(31):19725–19730. [PubMed] [Google Scholar]
- Merkel G. J., Scofield B. A. Conditions affecting the adherence of Cryptococcus neoformans to rat glial and lung cells in vitro. J Med Vet Mycol. 1993;31(1):55–64. [PubMed] [Google Scholar]
- Mirbod F., Banno Y., Ghannoum M. A., Ibrahim A. S., Nakashima S., Kitajima Y., Cole G. T., Nozawa Y. Purification and characterization of lysophospholipase-transacylase (h-LPTA) from a highly virulent strain of Candida albicans. Biochim Biophys Acta. 1995 Jul 13;1257(2):181–188. doi: 10.1016/0005-2760(95)00072-k. [DOI] [PubMed] [Google Scholar]
- Mitchell D. H., Sorrell T. C., Allworth A. M., Heath C. H., McGregor A. R., Papanaoum K., Richards M. J., Gottlieb T. Cryptococcal disease of the CNS in immunocompetent hosts: influence of cryptococcal variety on clinical manifestations and outcome. Clin Infect Dis. 1995 Mar;20(3):611–616. doi: 10.1093/clinids/20.3.611. [DOI] [PubMed] [Google Scholar]
- Ogawa H., Nozawa Y., Rojanavanich V., Tsuboi R., Yoshiike T., Banno Y., Takahashi M., Nombela C., Herreros E., Garcia-Saez M. I. Fungal enzymes in the pathogenesis of fungal infections. J Med Vet Mycol. 1992;30 (Suppl 1):189–196. doi: 10.1080/02681219280000881. [DOI] [PubMed] [Google Scholar]
- Price M. F., Cawson R. A. Phospholipase activity in Candida albicans. Sabouraudia. 1977 Jul;15(2):179–185. [PubMed] [Google Scholar]
- Rhodes J. C., Polacheck I., Kwon-Chung K. J. Phenoloxidase activity and virulence in isogenic strains of Cryptococcus neoformans. Infect Immun. 1982 Jun;36(3):1175–1184. doi: 10.1128/iai.36.3.1175-1184.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito K., Kates M. Substrate specificity of a highly purified phospholipase B from Penicillium notatum. Biochim Biophys Acta. 1974 Nov 18;369(2):245–253. doi: 10.1016/0005-2760(74)90255-0. [DOI] [PubMed] [Google Scholar]
- Saito K., Sugatani J., Okumura T. Phospholipase B from Penicillium notatum. Methods Enzymol. 1991;197:446–456. doi: 10.1016/0076-6879(91)97170-4. [DOI] [PubMed] [Google Scholar]
- Samaranayake L. P., Raeside J. M., MacFarlane T. W. Factors affecting the phospholipase activity of Candida species in vitro. Sabouraudia. 1984;22(3):201–207. [PubMed] [Google Scholar]
- Wells M. A., Dittmer J. C. A microanalytical technique for the quantitative determination of twenty-four classes of brain lipids. Biochemistry. 1966 Nov;5(11):3405–3418. doi: 10.1021/bi00875a004. [DOI] [PubMed] [Google Scholar]
- Witt W., Schweingruber M. E., Mertsching A. Phospholipase B from the plasma membrane of Saccharomyces cerevisiae. Separation of two forms with different carbohydrate content. Biochim Biophys Acta. 1984 Aug 15;795(1):108–116. doi: 10.1016/0005-2760(84)90110-3. [DOI] [PubMed] [Google Scholar]