Abstract
BACKGROUND—Currently the best prognostic index for operable non-small cell lung cancer (NSCLC) is the TNM staging system. Molecular biology holds the promise of predicting outcome for the individual patient and identifying novel therapeutic targets. Angiogenesis, matrix metalloproteinases (MMP)-2 and -9, and the erb/HER type I tyrosine kinase receptors are all implicated in the pathogenesis of NSCLC. METHODS—A retrospective analysis of 167 patients with resected stage I-IIIa NSCLC and >60 days postoperative survival with a minimum follow up of 2 years was undertaken. Immunohistochemical analysis was performed on paraffin embedded sections for the microvessel marker CD34, MMP-2 and MMP-9, EGFR, and c-erbB-2 to evaluate the relationships between and impact on survival of these molecular markers. RESULTS—Tumour cell MMP-9 (HR 1.91 (1.23-2.97)), a high microvessel count (HR 1.97 (1.28-3.03)), and stage (stage II HR 1.44 (0.87-2.40), stage IIIa HR 2.21 (1.31-3.74)) were independent prognostic factors. Patients with a high microvessel count and tumour cell MMP-9 expression had a worse outcome than cases with only one (HR 1.68 (1.04-2.73)) or neither (HR 4.43 (2.29-8.57)) of these markers. EGFR expression correlated with tumour cell MMP-9 expression (p<0.001). Immunoreactivity for both of these factors within the same tumour was associated with a poor prognosis (HR 2.22 (1.45-3.41)). CONCLUSION—Angiogenesis, EGFR, and MMP-9 expression provide prognostic information independent of TNM stage, allowing a more accurate outcome prediction for the individual patient. The development of novel anti-angiogenic agents, EGFR targeted therapies, and MMP inhibitors suggests that target specific adjuvant treatments may become a therapeutic option in patients with resected NSCLC.
Full Text
The Full Text of this article is available as a PDF (195.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyle P. Cancer, cigarette smoking and premature death in Europe: a review including the Recommendations of European Cancer Experts Consensus Meeting, Helsinki, October 1996. Lung Cancer. 1997 May;17(1):1–60. doi: 10.1016/s0169-5002(97)00648-x. [DOI] [PubMed] [Google Scholar]
- Brown P. D., Bloxidge R. E., Stuart N. S., Gatter K. C., Carmichael J. Association between expression of activated 72-kilodalton gelatinase and tumor spread in non-small-cell lung carcinoma. J Natl Cancer Inst. 1993 Apr 7;85(7):574–578. doi: 10.1093/jnci/85.7.574. [DOI] [PubMed] [Google Scholar]
- Ciardiello F., Bianco R., Damiano V., De Lorenzo S., Pepe S., De Placido S., Fan Z., Mendelsohn J., Bianco A. R., Tortora G. Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin Cancer Res. 1999 Apr;5(4):909–916. [PubMed] [Google Scholar]
- Cox G., Jones J. L., O'Byrne K. J. Matrix metalloproteinase 9 and the epidermal growth factor signal pathway in operable non-small cell lung cancer. Clin Cancer Res. 2000 Jun;6(6):2349–2355. [PubMed] [Google Scholar]
- Cox G., Jones J. L., Walker R. A., Steward W. P., O'Byrne K. J. Angiogenesis and non-small cell lung cancer. Lung Cancer. 2000 Feb;27(2):81–100. doi: 10.1016/s0169-5002(99)00096-3. [DOI] [PubMed] [Google Scholar]
- Cox G., Steward W. P., O'Byrne K. J. The plasmin cascade and matrix metalloproteinases in non-small cell lung cancer. Thorax. 1999 Feb;54(2):169–179. doi: 10.1136/thx.54.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curran S., Murray G. I. Matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 1999 Nov;189(3):300–308. doi: 10.1002/(SICI)1096-9896(199911)189:3<300::AID-PATH456>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Fontanini G., De Laurentiis M., Vignati S., Chinè S., Lucchi M., Silvestri V., Mussi A., De Placido S., Tortora G., Bianco A. R. Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic indicators of survival. Clin Cancer Res. 1998 Jan;4(1):241–249. [PubMed] [Google Scholar]
- Fontanini G., Lucchi M., Vignati S., Mussi A., Ciardiello F., De Laurentiis M., De Placido S., Basolo F., Angeletti C. A., Bevilacqua G. Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: a prospective study. J Natl Cancer Inst. 1997 Jun 18;89(12):881–886. doi: 10.1093/jnci/89.12.881. [DOI] [PubMed] [Google Scholar]
- Fox S. B., Leek R. D., Weekes M. P., Whitehouse R. M., Gatter K. C., Harris A. L. Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol. 1995 Nov;177(3):275–283. doi: 10.1002/path.1711770310. [DOI] [PubMed] [Google Scholar]
- Giatromanolaki A., Koukourakis M. I., O'Byrne K., Kaklamanis L., Dicoglou C., Trichia E., Whitehouse R., Harris A. L., Gatter K. C. Non-small cell lung cancer: c-erbB-2 overexpression correlates with low angiogenesis and poor prognosis. Anticancer Res. 1996 Nov-Dec;16(6B):3819–3825. [PubMed] [Google Scholar]
- Giatromanolaki A., Koukourakis M., O'Byrne K., Fox S., Whitehouse R., Talbot D. C., Harris A. L., Gatter K. C. Prognostic value of angiogenesis in operable non-small cell lung cancer. J Pathol. 1996 May;179(1):80–88. doi: 10.1002/(SICI)1096-9896(199605)179:1<80::AID-PATH547>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
- Jones J. L., Royall J. E., Walker R. A. E-cadherin relates to EGFR expression and lymph node metastasis in primary breast carcinoma. Br J Cancer. 1996 Oct;74(8):1237–1241. doi: 10.1038/bjc.1996.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kodate M., Kasai T., Hashimoto H., Yasumoto K., Iwata Y., Manabe H. Expression of matrix metalloproteinase (gelatinase) in T1 adenocarcinoma of the lung. Pathol Int. 1997 Jul;47(7):461–469. doi: 10.1111/j.1440-1827.1997.tb04525.x. [DOI] [PubMed] [Google Scholar]
- Koukourakis M. I., Giatromanolaki A., O'Byrne K. J., Whitehouse R. M., Talbot D. C., Gatter K. C., Harris A. L. Potential role of bcl-2 as a suppressor of tumour angiogenesis in non-small-cell lung cancer. Int J Cancer. 1997 Dec 19;74(6):565–570. doi: 10.1002/(sici)1097-0215(19971219)74:6<565::aid-ijc1>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
- Llorens A., Rodrigo I., López-Barcons L., Gonzalez-Garrigues M., Lozano E., Vinyals A., Quintanilla M., Cano A., Fabra A. Down-regulation of E-cadherin in mouse skin carcinoma cells enhances a migratory and invasive phenotype linked to matrix metalloproteinase-9 gelatinase expression. Lab Invest. 1998 Sep;78(9):1131–1142. [PubMed] [Google Scholar]
- Martin L., Green B., Renshaw C., Lowe D., Rudland P., Leinster S. J., Winstanley J. Examining the technique of angiogenesis assessment in invasive breast cancer. Br J Cancer. 1997;76(8):1046–1054. doi: 10.1038/bjc.1997.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Reilly M. S., Boehm T., Shing Y., Fukai N., Vasios G., Lane W. S., Flynn E., Birkhead J. R., Olsen B. R., Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997 Jan 24;88(2):277–285. doi: 10.1016/s0092-8674(00)81848-6. [DOI] [PubMed] [Google Scholar]
- O'Reilly M. S., Holmgren L., Shing Y., Chen C., Rosenthal R. A., Moses M., Lane W. S., Cao Y., Sage E. H., Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994 Oct 21;79(2):315–328. doi: 10.1016/0092-8674(94)90200-3. [DOI] [PubMed] [Google Scholar]
- O-Charoenrat P., Rhys-Evans P., Modjtahedi H., Court W., Box G., Eccles S. Overexpression of epidermal growth factor receptor in human head and neck squamous carcinoma cell lines correlates with matrix metalloproteinase-9 expression and in vitro invasion. Int J Cancer. 2000 May 1;86(3):307–317. doi: 10.1002/(sici)1097-0215(20000501)86:3<307::aid-ijc2>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
- Rasmussen H. S., McCann P. P. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol Ther. 1997;75(1):69–75. doi: 10.1016/s0163-7258(97)00023-5. [DOI] [PubMed] [Google Scholar]
- Rosenthal E. L., Johnson T. M., Allen E. D., Apel I. J., Punturieri A., Weiss S. J. Role of the plasminogen activator and matrix metalloproteinase systems in epidermal growth factor- and scatter factor-stimulated invasion of carcinoma cells. Cancer Res. 1998 Nov 15;58(22):5221–5230. [PubMed] [Google Scholar]
- Suzuki M., Iizasa T., Fujisawa T., Baba M., Yamaguchi Y., Kimura H., Suzuki H. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in non-small-cell lung cancer. Invasion Metastasis. 1998;18(3):134–141. doi: 10.1159/000024506. [DOI] [PubMed] [Google Scholar]
- Tanaka H., Nishida K., Sugita K., Yoshioka T. Antitumor efficacy of hypothemycin, a new Ras-signaling inhibitor. Jpn J Cancer Res. 1999 Oct;90(10):1139–1145. doi: 10.1111/j.1349-7006.1999.tb00688.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veale D., Kerr N., Gibson G. J., Kelly P. J., Harris A. L. The relationship of quantitative epidermal growth factor receptor expression in non-small cell lung cancer to long term survival. Br J Cancer. 1993 Jul;68(1):162–165. doi: 10.1038/bjc.1993.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vermeulen P. B., Gasparini G., Fox S. B., Toi M., Martin L., McCulloch P., Pezzella F., Viale G., Weidner N., Harris A. L. Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer. 1996 Dec;32A(14):2474–2484. doi: 10.1016/s0959-8049(96)00379-6. [DOI] [PubMed] [Google Scholar]
- Westermarck J., Kähäri V. M. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999 May;13(8):781–792. [PubMed] [Google Scholar]