Abstract
BACKGROUND—Nitric oxide (NO) is a product of the enzyme nitric oxide synthase (NOS) and is found in normal and asthmatic human airways. The administration of L-arginine results in an increase in airway NO production in asthmatic subjects. This is thought to occur because L-arginine is the substrate for NOS. However, studies in the systemic vasculature suggest that other mechanisms may be responsible. METHODS—Eight patients with steroid naive asthma each received 2.5 g L-arginine, 2.5 g D-arginine, and 2.0% saline by ultrasonic nebuliser on separate days in a randomised, single blind manner. Exhaled NO was measured by chemiluminescence and spirometric tests were performed before and for 3 hours after each administration. The mean concentration of NO after exposure was calculated from the area under the curve. RESULTS—L-arginine, D-arginine, and 2.0% saline induced a mean (95% CI) maximal bronchoconstriction of 11.9% (-1.7 to 25.4), 10.0% (2.8 to 17.2), and 8.5% (-2.5 to 19.5) of the starting forced expiratory volume in one second (FEV1), respectively. Exhaled NO declined in proportion to the degree of bronchoconstriction (r=0.60, p<0.01). Bronchoconstriction and the acute reduction in exhaled NO resolved within 15 minutes. The mean post-exposure concentration of NO was 15.75 parts per billion (ppb) after L-arginine, 15.16 ppb after D-arginine, and 12.74 ppb after 2.0% saline. The mean (95% CI) difference between L-arginine and placebo was 3.01(0.32 to 5.7) ppb, between D-arginine and placebo 2.42 (0.10 to 4.74) ppb, and between L- and D-arginine 0.59 (-1.56 to 2.74) ppb. CONCLUSIONS—Exhaled NO decreased with acute bronchoconstriction and returned to baseline with the resolution of bronchoconstriction. Exhaled NO increased following the administration of both L-arginine and D-arginine. Since NOS is stereospecific, this finding suggests that the increase in exhaled NO is not entirely mediated through an increase in NOS enzyme activity. We suggest that arginine may react in a non-stereospecific fashion with reactive oxygen species present in asthmatic airways.
Full Text
The Full Text of this article is available as a PDF (134.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alving K., Weitzberg E., Lundberg J. M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur Respir J. 1993 Oct;6(9):1368–1370. [PubMed] [Google Scholar]
- Arnal J. F., Flores P., Rami J., Murris-Espin M., Bremont F., Pasto I Aguilla M., Serrano E., Didier A. Nasal nitric oxide concentration in paranasal sinus inflammatory diseases. Eur Respir J. 1999 Feb;13(2):307–312. doi: 10.1034/j.1399-3003.1999.13b15.x. [DOI] [PubMed] [Google Scholar]
- Bland J. M., Altman D. G. Calculating correlation coefficients with repeated observations: Part 1--Correlation within subjects. BMJ. 1995 Feb 18;310(6977):446–446. doi: 10.1136/bmj.310.6977.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drexler H., Zeiher A. M., Meinzer K., Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet. 1991 Dec 21;338(8782-8783):1546–1550. doi: 10.1016/0140-6736(91)92372-9. [DOI] [PubMed] [Google Scholar]
- Dupont L. J., Rochette F., Demedts M. G., Verleden G. M. Exhaled nitric oxide correlates with airway hyperresponsiveness in steroid-naive patients with mild asthma. Am J Respir Crit Care Med. 1998 Mar;157(3 Pt 1):894–898. doi: 10.1164/ajrccm.157.3.9709064. [DOI] [PubMed] [Google Scholar]
- Ewig S., Torres A., Riquelme R., El-Ebiary M., Rovira M., Carreras E., Raño A., Xaubet A. Pulmonary complications in patients with haematological malignancies treated at a respiratory ICU. Eur Respir J. 1998 Jul;12(1):116–122. doi: 10.1183/09031936.98.12010116. [DOI] [PubMed] [Google Scholar]
- Hecker M., Sessa W. C., Harris H. J., Anggård E. E., Vane J. R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8612–8616. doi: 10.1073/pnas.87.21.8612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt J. F., Fang K., Malik R., Snyder A., Malhotra N., Platts-Mills T. A., Gaston B. Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med. 2000 Mar;161(3 Pt 1):694–699. doi: 10.1164/ajrccm.161.3.9911005. [DOI] [PubMed] [Google Scholar]
- James A. L., Hogg J. C., Dunn L. A., Paré P. D. The use of the internal perimeter to compare airway size and to calculate smooth muscle shortening. Am Rev Respir Dis. 1988 Jul;138(1):136–139. doi: 10.1164/ajrccm/138.1.136. [DOI] [PubMed] [Google Scholar]
- Jatakanon A., Lim S., Kharitonov S. A., Chung K. F., Barnes P. J. Correlation between exhaled nitric oxide, sputum eosinophils, and methacholine responsiveness in patients with mild asthma. Thorax. 1998 Feb;53(2):91–95. doi: 10.1136/thx.53.2.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jöbsis Q., Raatgeep H. C., Hermans P. W., de Jongste J. C. Hydrogen peroxide in exhaled air is increased in stable asthmatic children. Eur Respir J. 1997 Mar;10(3):519–521. [PubMed] [Google Scholar]
- Kharitonov S. A., Chung K. F., Evans D., O'Connor B. J., Barnes P. J. Increased exhaled nitric oxide in asthma is mainly derived from the lower respiratory tract. Am J Respir Crit Care Med. 1996 Jun;153(6 Pt 1):1773–1780. doi: 10.1164/ajrccm.153.6.8665033. [DOI] [PubMed] [Google Scholar]
- Kharitonov S. A., Lubec G., Lubec B., Hjelm M., Barnes P. J. L-arginine increases exhaled nitric oxide in normal human subjects. Clin Sci (Lond) 1995 Feb;88(2):135–139. doi: 10.1042/cs0880135. [DOI] [PubMed] [Google Scholar]
- Kharitonov S., Alving K., Barnes P. J. Exhaled and nasal nitric oxide measurements: recommendations. The European Respiratory Society Task Force. Eur Respir J. 1997 Jul;10(7):1683–1693. doi: 10.1183/09031936.97.10071683. [DOI] [PubMed] [Google Scholar]
- Linnane S. J., Keatings V. M., Costello C. M., Moynihan J. B., O'Connor C. M., Fitzgerald M. X., McLoughlin P. Total sputum nitrate plus nitrite is raised during acute pulmonary infection in cystic fibrosis. Am J Respir Crit Care Med. 1998 Jul;158(1):207–212. doi: 10.1164/ajrccm.158.1.9707096. [DOI] [PubMed] [Google Scholar]
- Marshall H. E., Stamler J. S. NO waiting to exhale in asthma. Am J Respir Crit Care Med. 2000 Mar;161(3 Pt 1):685–687. doi: 10.1164/ajrccm.161.3.16134. [DOI] [PubMed] [Google Scholar]
- Matthews J. N., Altman D. G., Campbell M. J., Royston P. Analysis of serial measurements in medical research. BMJ. 1990 Jan 27;300(6719):230–235. doi: 10.1136/bmj.300.6719.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagase S., Takemura K., Ueda A., Hirayama A., Aoyagi K., Kondoh M., Koyama A. A novel nonenzymatic pathway for the generation of nitric oxide by the reaction of hydrogen peroxide and D- or L-arginine. Biochem Biophys Res Commun. 1997 Apr 7;233(1):150–153. doi: 10.1006/bbrc.1997.6428. [DOI] [PubMed] [Google Scholar]
- Nijkamp F. P., van der Linde H. J., Folkerts G. Nitric oxide synthesis inhibitors induce airway hyperresponsiveness in the guinea pig in vivo and in vitro. Role of the epithelium. Am Rev Respir Dis. 1993 Sep;148(3):727–734. doi: 10.1164/ajrccm/148.3.727. [DOI] [PubMed] [Google Scholar]
- Pendino K. J., Laskin J. D., Shuler R. L., Punjabi C. J., Laskin D. L. Enhanced production of nitric oxide by rat alveolar macrophages after inhalation of a pulmonary irritant is associated with increased expression of nitric oxide synthase. J Immunol. 1993 Dec 15;151(12):7196–7205. [PubMed] [Google Scholar]
- Rahman I., Morrison D., Donaldson K., MacNee W. Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med. 1996 Oct;154(4 Pt 1):1055–1060. doi: 10.1164/ajrccm.154.4.8887607. [DOI] [PubMed] [Google Scholar]
- Sapienza M. A., Kharitonov S. A., Horvath I., Chung K. F., Barnes P. J. Effect of inhaled L-arginine on exhaled nitric oxide in normal and asthmatic subjects. Thorax. 1998 Mar;53(3):172–175. doi: 10.1136/thx.53.3.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silkoff P. E., McClean P. A., Slutsky A. S., Caramori M., Chapman K. R., Gutierrez C., Zamel N. Exhaled nitric oxide and bronchial reactivity during and after inhaled beclomethasone in mild asthma. J Asthma. 1998;35(6):473–479. doi: 10.3109/02770909809071000. [DOI] [PubMed] [Google Scholar]
- Taylor D. A., McGrath J. L., Orr L. M., Barnes P. J., O'Connor B. J. Effect of endogenous nitric oxide inhibition on airway responsiveness to histamine and adenosine-5'-monophosphate in asthma. Thorax. 1998 Jun;53(6):483–489. doi: 10.1136/thx.53.6.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueda S., Petrie J. R., Cleland S. J., Elliott H. L., Connell J. M. Insulin vasodilatation and the "arginine paradox". Lancet. 1998 Mar 28;351(9107):959–960. doi: 10.1016/S0140-6736(05)60615-0. [DOI] [PubMed] [Google Scholar]
- Vachier I., Chanez P., Le Doucen C., Damon M., Descomps B., Godard P. Enhancement of reactive oxygen species formation in stable and unstable asthmatic patients. Eur Respir J. 1994 Sep;7(9):1585–1592. doi: 10.1183/09031936.94.07091585. [DOI] [PubMed] [Google Scholar]
- Yoshihara S., Nadel J. A., Figini M., Emanueli C., Pradelles P., Geppetti P. Endogenous nitric oxide inhibits bronchoconstriction induced by cold-air inhalation in guinea pigs: role of kinins. Am J Respir Crit Care Med. 1998 Feb;157(2):547–552. doi: 10.1164/ajrccm.157.2.9704074. [DOI] [PubMed] [Google Scholar]
- de Gouw H. W., Hendriks J., Woltman A. M., Twiss I. M., Sterk P. J. Exhaled nitric oxide (NO) is reduced shortly after bronchoconstriction to direct and indirect stimuli in asthma. Am J Respir Crit Care Med. 1998 Jul;158(1):315–319. doi: 10.1164/ajrccm.158.1.9703005. [DOI] [PubMed] [Google Scholar]