Abstract
The pathogenic yeast Cryptococcus neoformans must reduce Fe(III) to Fe(II) prior to uptake. We investigated mechanisms of reduction using the chromogenic ferrous chelator bathophenanthroline disulfonate. Iron-depleted cells reduced 57 nmol of Fe(III) per 10(6) cells per h, while iron-replete cells reduced only 8 nmol of Fe(III). Exponential-phase cells reduced the most and stationary-phase cells reduced the least Fe(III), independent of iron status. Supernatants from iron-depleted cells reduced up to 2 nmol of Fe(III) per 10(6) cells per h, while supernatants from iron-replete cells reduced 0.5 nmol of Fe(III), implying regulation of the secreted reductant(s). One such reductant is 3-hydroxyanthranilic acid (3HAA), which was found at concentrations up to 29 microM in iron-depleted cultures but <2 microM in cultures supplemented with iron. Moreover, when washed and resuspended in low iron medium, iron-depleted cells secreted 20.4 microM 3HAA, while iron-replete cells secreted only 4.5 microM 3HAA. Each mole of 3HAA reduced 3 mol of Fe(III), and increasing 3HAA concentrations correlated with increasing reducing activity of supernatants; however, 3HAA accounted for only half of the supernatant's reducing activity, indicating the presence of additional reductants. Finally, we found that melanized stationary-phase cells reduced 2 nmol of Fe(III) per 10(6) cells per h--16 times the rate of nonmelanized cells--suggesting that this redox polymer participates in reduction of Fe(III).
Full Text
The Full Text of this article is available as a PDF (195.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boelaert J. R., Fenves A. Z., Coburn J. W. Deferoxamine therapy and mucormycosis in dialysis patients: report of an international registry. Am J Kidney Dis. 1991 Dec;18(6):660–667. doi: 10.1016/s0272-6386(12)80606-8. [DOI] [PubMed] [Google Scholar]
- Christen S., Southwell-Keely P. T., Stocker R. Oxidation of 3-hydroxyanthranilic acid to the phenoxazinone cinnabarinic acid by peroxyl radicals and by compound I of peroxidases or catalase. Biochemistry. 1992 Sep 1;31(34):8090–8097. doi: 10.1021/bi00149a045. [DOI] [PubMed] [Google Scholar]
- Cox C. D. Deferration of laboratory media and assays for ferric and ferrous ions. Methods Enzymol. 1994;235:315–329. doi: 10.1016/0076-6879(94)35150-3. [DOI] [PubMed] [Google Scholar]
- Dancis A., Klausner R. D., Hinnebusch A. G., Barriocanal J. G. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2294–2301. doi: 10.1128/mcb.10.5.2294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dancis A., Roman D. G., Anderson G. J., Hinnebusch A. G., Klausner R. D. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3869–3873. doi: 10.1073/pnas.89.9.3869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drechsel H., Thieken A., Reissbrodt R., Jung G., Winkelmann G. Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol. 1993 May;175(9):2727–2733. doi: 10.1128/jb.175.9.2727-2733.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dykens J. A., Sullivan S. G., Stern A. Oxidative reactivity of the tryptophan metabolites 3-hydroxyanthranilate, cinnabarinate, quinolinate and picolinate. Biochem Pharmacol. 1987 Jan 15;36(2):211–217. doi: 10.1016/0006-2952(87)90691-5. [DOI] [PubMed] [Google Scholar]
- Elderfield A. J., Truscott R. J., Gan I. E., Schier G. M. Separation of tryptophan metabolites by reversed-phase high-performance liquid chromatography with amperometric and fluorescence detection. J Chromatogr. 1989 Oct 27;495:71–80. doi: 10.1016/s0378-4347(00)82610-9. [DOI] [PubMed] [Google Scholar]
- Gan E. V., Haberman H. F., Menon I. A. Electron transfer properties of melanin. Arch Biochem Biophys. 1976 Apr;173(2):666–672. doi: 10.1016/0003-9861(76)90304-0. [DOI] [PubMed] [Google Scholar]
- Georgatsou E., Alexandraki D. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 1994 May;14(5):3065–3073. doi: 10.1128/mcb.14.5.3065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horak V., Gillette J. R. A study of the oxidation-reduction state of synthetic 3,4-dihydroxy-DL-phenylalanine melanin. Mol Pharmacol. 1971 Jul;7(4):429–433. [PubMed] [Google Scholar]
- Jacobson E. S., Ayers D. J., Harrell A. C., Nicholas C. C. Genetic and phenotypic characterization of capsule mutants of Cryptococcus neoformans. J Bacteriol. 1982 Jun;150(3):1292–1296. doi: 10.1128/jb.150.3.1292-1296.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson E. S., Petro M. J. Extracellular iron chelation in Cryptococcus neoformans. J Med Vet Mycol. 1987 Dec;25(6):415–418. [PubMed] [Google Scholar]
- Jacobson E. S., Tinnell S. B. Antioxidant function of fungal melanin. J Bacteriol. 1993 Nov;175(21):7102–7104. doi: 10.1128/jb.175.21.7102-7104.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson E. S., Vartivarian S. E. Iron assimilation in Cryptococcus neoformans. J Med Vet Mycol. 1992;30(6):443–450. [PubMed] [Google Scholar]
- Lesuisse E., Labbe P. Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. J Gen Microbiol. 1989 Feb;135(2):257–263. doi: 10.1099/00221287-135-2-257. [DOI] [PubMed] [Google Scholar]
- Lesuisse E., Raguzzi F., Crichton R. R. Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step. J Gen Microbiol. 1987 Nov;133(11):3229–3236. doi: 10.1099/00221287-133-11-3229. [DOI] [PubMed] [Google Scholar]
- Lesuisse E., Simon M., Klein R., Labbe P. Excretion of anthranilate and 3-hydroxyanthranilate by Saccharomyces cerevisiae: relationship to iron metabolism. J Gen Microbiol. 1992 Jan;138(1):85–89. doi: 10.1099/00221287-138-1-85. [DOI] [PubMed] [Google Scholar]
- Neilands J. B. Iron absorption and transport in microorganisms. Annu Rev Nutr. 1981;1:27–46. doi: 10.1146/annurev.nu.01.070181.000331. [DOI] [PubMed] [Google Scholar]
- Pilas B., Sarna T., Kalyanaraman B., Swartz H. M. The effect of melanin on iron associated decomposition of hydrogen peroxide. Free Radic Biol Med. 1988;4(5):285–293. doi: 10.1016/0891-5849(88)90049-4. [DOI] [PubMed] [Google Scholar]
- Vartivarian S. E., Anaissie E. J., Cowart R. E., Sprigg H. A., Tingler M. J., Jacobson E. S. Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis. 1993 Jan;167(1):186–190. doi: 10.1093/infdis/167.1.186. [DOI] [PubMed] [Google Scholar]
- Vartivarian S. E., Cowart R. E., Anaissie E. J., Tashiro T., Sprigg H. A. Iron acquisition by Cryptococcus neoformans. J Med Vet Mycol. 1995 May-Jun;33(3):151–156. [PubMed] [Google Scholar]
- Weinberg E. D. Iron and infection. Microbiol Rev. 1978 Mar;42(1):45–66. doi: 10.1128/mr.42.1.45-66.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]