Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Feb;65(2):434–438. doi: 10.1128/iai.65.2.434-438.1997

Ferric iron reduction by Cryptococcus neoformans.

K J Nyhus 1, A T Wilborn 1, E S Jacobson 1
PMCID: PMC174613  PMID: 9009293

Abstract

The pathogenic yeast Cryptococcus neoformans must reduce Fe(III) to Fe(II) prior to uptake. We investigated mechanisms of reduction using the chromogenic ferrous chelator bathophenanthroline disulfonate. Iron-depleted cells reduced 57 nmol of Fe(III) per 10(6) cells per h, while iron-replete cells reduced only 8 nmol of Fe(III). Exponential-phase cells reduced the most and stationary-phase cells reduced the least Fe(III), independent of iron status. Supernatants from iron-depleted cells reduced up to 2 nmol of Fe(III) per 10(6) cells per h, while supernatants from iron-replete cells reduced 0.5 nmol of Fe(III), implying regulation of the secreted reductant(s). One such reductant is 3-hydroxyanthranilic acid (3HAA), which was found at concentrations up to 29 microM in iron-depleted cultures but <2 microM in cultures supplemented with iron. Moreover, when washed and resuspended in low iron medium, iron-depleted cells secreted 20.4 microM 3HAA, while iron-replete cells secreted only 4.5 microM 3HAA. Each mole of 3HAA reduced 3 mol of Fe(III), and increasing 3HAA concentrations correlated with increasing reducing activity of supernatants; however, 3HAA accounted for only half of the supernatant's reducing activity, indicating the presence of additional reductants. Finally, we found that melanized stationary-phase cells reduced 2 nmol of Fe(III) per 10(6) cells per h--16 times the rate of nonmelanized cells--suggesting that this redox polymer participates in reduction of Fe(III).

Full Text

The Full Text of this article is available as a PDF (195.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boelaert J. R., Fenves A. Z., Coburn J. W. Deferoxamine therapy and mucormycosis in dialysis patients: report of an international registry. Am J Kidney Dis. 1991 Dec;18(6):660–667. doi: 10.1016/s0272-6386(12)80606-8. [DOI] [PubMed] [Google Scholar]
  2. Christen S., Southwell-Keely P. T., Stocker R. Oxidation of 3-hydroxyanthranilic acid to the phenoxazinone cinnabarinic acid by peroxyl radicals and by compound I of peroxidases or catalase. Biochemistry. 1992 Sep 1;31(34):8090–8097. doi: 10.1021/bi00149a045. [DOI] [PubMed] [Google Scholar]
  3. Cox C. D. Deferration of laboratory media and assays for ferric and ferrous ions. Methods Enzymol. 1994;235:315–329. doi: 10.1016/0076-6879(94)35150-3. [DOI] [PubMed] [Google Scholar]
  4. Dancis A., Klausner R. D., Hinnebusch A. G., Barriocanal J. G. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2294–2301. doi: 10.1128/mcb.10.5.2294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dancis A., Roman D. G., Anderson G. J., Hinnebusch A. G., Klausner R. D. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3869–3873. doi: 10.1073/pnas.89.9.3869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drechsel H., Thieken A., Reissbrodt R., Jung G., Winkelmann G. Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol. 1993 May;175(9):2727–2733. doi: 10.1128/jb.175.9.2727-2733.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dykens J. A., Sullivan S. G., Stern A. Oxidative reactivity of the tryptophan metabolites 3-hydroxyanthranilate, cinnabarinate, quinolinate and picolinate. Biochem Pharmacol. 1987 Jan 15;36(2):211–217. doi: 10.1016/0006-2952(87)90691-5. [DOI] [PubMed] [Google Scholar]
  8. Elderfield A. J., Truscott R. J., Gan I. E., Schier G. M. Separation of tryptophan metabolites by reversed-phase high-performance liquid chromatography with amperometric and fluorescence detection. J Chromatogr. 1989 Oct 27;495:71–80. doi: 10.1016/s0378-4347(00)82610-9. [DOI] [PubMed] [Google Scholar]
  9. Gan E. V., Haberman H. F., Menon I. A. Electron transfer properties of melanin. Arch Biochem Biophys. 1976 Apr;173(2):666–672. doi: 10.1016/0003-9861(76)90304-0. [DOI] [PubMed] [Google Scholar]
  10. Georgatsou E., Alexandraki D. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 1994 May;14(5):3065–3073. doi: 10.1128/mcb.14.5.3065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horak V., Gillette J. R. A study of the oxidation-reduction state of synthetic 3,4-dihydroxy-DL-phenylalanine melanin. Mol Pharmacol. 1971 Jul;7(4):429–433. [PubMed] [Google Scholar]
  12. Jacobson E. S., Ayers D. J., Harrell A. C., Nicholas C. C. Genetic and phenotypic characterization of capsule mutants of Cryptococcus neoformans. J Bacteriol. 1982 Jun;150(3):1292–1296. doi: 10.1128/jb.150.3.1292-1296.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacobson E. S., Petro M. J. Extracellular iron chelation in Cryptococcus neoformans. J Med Vet Mycol. 1987 Dec;25(6):415–418. [PubMed] [Google Scholar]
  14. Jacobson E. S., Tinnell S. B. Antioxidant function of fungal melanin. J Bacteriol. 1993 Nov;175(21):7102–7104. doi: 10.1128/jb.175.21.7102-7104.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobson E. S., Vartivarian S. E. Iron assimilation in Cryptococcus neoformans. J Med Vet Mycol. 1992;30(6):443–450. [PubMed] [Google Scholar]
  16. Lesuisse E., Labbe P. Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. J Gen Microbiol. 1989 Feb;135(2):257–263. doi: 10.1099/00221287-135-2-257. [DOI] [PubMed] [Google Scholar]
  17. Lesuisse E., Raguzzi F., Crichton R. R. Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step. J Gen Microbiol. 1987 Nov;133(11):3229–3236. doi: 10.1099/00221287-133-11-3229. [DOI] [PubMed] [Google Scholar]
  18. Lesuisse E., Simon M., Klein R., Labbe P. Excretion of anthranilate and 3-hydroxyanthranilate by Saccharomyces cerevisiae: relationship to iron metabolism. J Gen Microbiol. 1992 Jan;138(1):85–89. doi: 10.1099/00221287-138-1-85. [DOI] [PubMed] [Google Scholar]
  19. Neilands J. B. Iron absorption and transport in microorganisms. Annu Rev Nutr. 1981;1:27–46. doi: 10.1146/annurev.nu.01.070181.000331. [DOI] [PubMed] [Google Scholar]
  20. Pilas B., Sarna T., Kalyanaraman B., Swartz H. M. The effect of melanin on iron associated decomposition of hydrogen peroxide. Free Radic Biol Med. 1988;4(5):285–293. doi: 10.1016/0891-5849(88)90049-4. [DOI] [PubMed] [Google Scholar]
  21. Vartivarian S. E., Anaissie E. J., Cowart R. E., Sprigg H. A., Tingler M. J., Jacobson E. S. Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis. 1993 Jan;167(1):186–190. doi: 10.1093/infdis/167.1.186. [DOI] [PubMed] [Google Scholar]
  22. Vartivarian S. E., Cowart R. E., Anaissie E. J., Tashiro T., Sprigg H. A. Iron acquisition by Cryptococcus neoformans. J Med Vet Mycol. 1995 May-Jun;33(3):151–156. [PubMed] [Google Scholar]
  23. Weinberg E. D. Iron and infection. Microbiol Rev. 1978 Mar;42(1):45–66. doi: 10.1128/mr.42.1.45-66.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES