Skip to main content
Thorax logoLink to Thorax
. 2002 Nov;57(11):930–934. doi: 10.1136/thorax.57.11.930

Matrix metalloproteases in BAL fluid of patients with cystic fibrosis and their modulation by treatment with dornase alpha

F Ratjen 1, C Hartog 1, K Paul 1, J Wermelt 1, J Braun 1
PMCID: PMC1746216  PMID: 12403873

Abstract

Background: Matrix metalloproteinases (MMPs) are involved in the remodelling and degradation of extracellular matrix and may play a role in pulmonary tissue destruction in cystic fibrosis (CF).

Methods: Bronchoalveolar lavage (BAL) fluid levels of MMP-8, MMP-9, and their natural inhibitor TIMP-1 were measured on two occasions within 18 months in 23 children with mild CF, 13 of whom were treated with DNase.

Results: MMP-8 (39.3 (6.8) v 0.12 (0.01) ng/ml), MMP-9 (58.0 (11.4) v 0.5 (0.02) ng/ml), and the molar ratio of MMP-9/TIMP-1 (0.36 (0.05) v 0.048 (0.01)) were significantly higher in patients with CF than in control children without lung disease. Gelatine zymography showed the typical banding pattern of neutrophil derived MMP-9, including 130 kDa NGAL-MMP-9 complex and 92 kDa latent MMP-9 bands; 85 kDa bands (corresponding to active MMP-9) were seen in all patients. There was a close correlation between BAL fluid concentrations of MMPs and α2-macroglobulin, a marker of alveolocapillary leakage. After 18 months MMP levels were increased in untreated patients and decreased in patients treated with DNase.

Conclusions: Uninhibited MMPs may contribute to pulmonary tissue destruction even in CF patients with mild lung disease that may be positively affected by treatment with DNase.

Full Text

The Full Text of this article is available as a PDF (159.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong D. S., Grimwood K., Carzino R., Carlin J. B., Olinsky A., Phelan P. D. Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ. 1995 Jun 17;310(6994):1571–1572. doi: 10.1136/bmj.310.6994.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergmann U., Michaelis J., Oberhoff R., Knäuper V., Beckmann R., Tschesche H. Enzyme linked immunosorbent assays (ELISA) for the quantitative determination of human leukocyte collagenase and gelatinase. J Clin Chem Clin Biochem. 1989 Jun;27(6):351–359. doi: 10.1515/cclm.1989.27.6.351. [DOI] [PubMed] [Google Scholar]
  3. Braun J., Mehnert A., Dalhoff K., Wiessmann K. J., Ratjen F. Different BALF protein composition in normal children and adults. Respiration. 1997;64(5):350–357. doi: 10.1159/000196703. [DOI] [PubMed] [Google Scholar]
  4. Costello C. M., O'Connor C. M., Finlay G. A., Shiels P., FitzGerald M. X., Hayes J. P. Effect of nebulised recombinant DNase on neutrophil elastase load in cystic fibrosis. Thorax. 1996 Jun;51(6):619–623. doi: 10.1136/thx.51.6.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cowland J. B., Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics. 1997 Oct 1;45(1):17–23. doi: 10.1006/geno.1997.4896. [DOI] [PubMed] [Google Scholar]
  6. Delacourt C., Le Bourgeois M., D'Ortho M. P., Doit C., Scheinmann P., Navarro J., Harf A., Hartmann D. J., Lafuma C. Imbalance between 95 kDa type IV collagenase and tissue inhibitor of metalloproteinases in sputum of patients with cystic fibrosis. Am J Respir Crit Care Med. 1995 Aug;152(2):765–774. doi: 10.1164/ajrccm.152.2.7633740. [DOI] [PubMed] [Google Scholar]
  7. Delclaux C., Delacourt C., D'Ortho M. P., Boyer V., Lafuma C., Harf A. Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane. Am J Respir Cell Mol Biol. 1996 Mar;14(3):288–295. doi: 10.1165/ajrcmb.14.3.8845180. [DOI] [PubMed] [Google Scholar]
  8. Gibbs D. F., Warner R. L., Weiss S. J., Johnson K. J., Varani J. Characterization of matrix metalloproteinases produced by rat alveolar macrophages. Am J Respir Cell Mol Biol. 1999 Jun;20(6):1136–1144. doi: 10.1165/ajrcmb.20.6.3483. [DOI] [PubMed] [Google Scholar]
  9. Gomez D. E., Alonso D. F., Yoshiji H., Thorgeirsson U. P. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997 Oct;74(2):111–122. [PubMed] [Google Scholar]
  10. Grasemann H., Ratjen F. Cystic fibrosis lung disease: the role of nitric oxide. Pediatr Pulmonol. 1999 Dec;28(6):442–448. doi: 10.1002/(sici)1099-0496(199912)28:6<442::aid-ppul10>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  11. Khan T. Z., Wagener J. S., Bost T., Martinez J., Accurso F. J., Riches D. W. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995 Apr;151(4):1075–1082. doi: 10.1164/ajrccm/151.4.1075. [DOI] [PubMed] [Google Scholar]
  12. Kleiner D. E., Stetler-Stevenson W. G. Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem. 1994 May 1;218(2):325–329. doi: 10.1006/abio.1994.1186. [DOI] [PubMed] [Google Scholar]
  13. Konstan M. W., Hilliard K. A., Norvell T. M., Berger M. Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med. 1994 Aug;150(2):448–454. doi: 10.1164/ajrccm.150.2.8049828. [DOI] [PubMed] [Google Scholar]
  14. Leber T. M., Balkwill F. R. Zymography: a single-step staining method for quantitation of proteolytic activity on substrate gels. Anal Biochem. 1997 Jun 15;249(1):24–28. doi: 10.1006/abio.1997.2170. [DOI] [PubMed] [Google Scholar]
  15. Meade M. O., Guyatt G. H., Cook R. J., Groll R., Kachura J. R., Wigg M., Cook D. J., Slutsky A. S., Stewart T. E. Agreement between alternative classifications of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001 Feb;163(2):490–493. doi: 10.1164/ajrccm.163.2.2006067. [DOI] [PubMed] [Google Scholar]
  16. Murphy G., Docherty A. J. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol. 1992 Aug;7(2):120–125. doi: 10.1165/ajrcmb/7.2.120. [DOI] [PubMed] [Google Scholar]
  17. Perks B., Shute J. K. DNA and actin bind and inhibit interleukin-8 function in cystic fibrosis sputa: in vitro effects of mucolytics. Am J Respir Crit Care Med. 2000 Nov;162(5):1767–1772. doi: 10.1164/ajrccm.162.5.9908107. [DOI] [PubMed] [Google Scholar]
  18. Ratjen F., Bredendiek M., Brendel M., Meltzer J., Costabel U. Differential cytology of bronchoalveolar lavage fluid in normal children. Eur Respir J. 1994 Oct;7(10):1865–1870. doi: 10.1183/09031936.94.07101865. [DOI] [PubMed] [Google Scholar]
  19. Ratjen F., Havers W., Braun J. Intrapulmonary protein leakage in immunocompromised children and adults with pneumonia. Thorax. 1999 May;54(5):432–436. doi: 10.1136/thx.54.5.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ratjen F., Rietschel E., Griese M., Ballmann M., Kleinau I., Döring G., Reinhardt D., Paul K. Fractional analysis of bronchoalveolar lavage fluid cytology in cystic fibrosis patients with normal lung function. Bronchoalveolar lavage for the evaluation of anti-inflammatory treatment (BEAT) study group. Eur Respir J. 2000 Jan;15(1):141–145. doi: 10.1183/09031936.00.15114100. [DOI] [PubMed] [Google Scholar]
  21. Ricou B., Nicod L., Lacraz S., Welgus H. G., Suter P. M., Dayer J. M. Matrix metalloproteinases and TIMP in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1996 Aug;154(2 Pt 1):346–352. doi: 10.1164/ajrccm.154.2.8756805. [DOI] [PubMed] [Google Scholar]
  22. Segura-Valdez L., Pardo A., Gaxiola M., Uhal B. D., Becerril C., Selman M. Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest. 2000 Mar;117(3):684–694. doi: 10.1378/chest.117.3.684. [DOI] [PubMed] [Google Scholar]
  23. Sepper R., Konttinen Y. T., Ding Y., Takagi M., Sorsa T. Human neutrophil collagenase (MMP-8), identified in bronchiectasis BAL fluid, correlates with severity of disease. Chest. 1995 Jun;107(6):1641–1647. doi: 10.1378/chest.107.6.1641. [DOI] [PubMed] [Google Scholar]
  24. Shak S., Capon D. J., Hellmiss R., Marsters S. A., Baker C. L. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9188–9192. doi: 10.1073/pnas.87.23.9188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Suga M., Iyonaga K., Okamoto T., Gushima Y., Miyakawa H., Akaike T., Ando M. Characteristic elevation of matrix metalloproteinase activity in idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2000 Nov;162(5):1949–1956. doi: 10.1164/ajrccm.162.5.9906096. [DOI] [PubMed] [Google Scholar]
  26. Torii K., Iida K., Miyazaki Y., Saga S., Kondoh Y., Taniguchi H., Taki F., Takagi K., Matsuyama M., Suzuki R. Higher concentrations of matrix metalloproteinases in bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Am J Respir Crit Care Med. 1997 Jan;155(1):43–46. doi: 10.1164/ajrccm.155.1.9001287. [DOI] [PubMed] [Google Scholar]
  27. Yao P. M., Buhler J. M., d'Ortho M. P., Lebargy F., Delclaux C., Harf A., Lafuma C. Expression of matrix metalloproteinase gelatinases A and B by cultured epithelial cells from human bronchial explants. J Biol Chem. 1996 Jun 28;271(26):15580–15589. doi: 10.1074/jbc.271.26.15580. [DOI] [PubMed] [Google Scholar]
  28. Zahm J. M., Girod de Bentzmann S., Deneuville E., Perrot-Minnot C., Dabadie A., Pennaforte F., Roussey M., Shak S., Puchelle E. Dose-dependent in vitro effect of recombinant human DNase on rheological and transport properties of cystic fibrosis respiratory mucus. Eur Respir J. 1995 Mar;8(3):381–386. doi: 10.1183/09031936.95.08030381. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES