Skip to main content
Thorax logoLink to Thorax
. 2002 Mar;57(3):258–262. doi: 10.1136/thorax.57.3.258

Effect of assist negative pressure ventilation by microprocessor based iron lung on breathing effort

M Gorini 1, G Villella 1, R Ginanni 1, A Augustynen 1, D Tozzi 1, A Corrado 1
PMCID: PMC1746266  PMID: 11867832

Abstract

Background: The lack of patient triggering capability during negative pressure ventilation (NPV) may contribute to poor patient synchrony and induction of upper airway collapse. This study was undertaken to evaluate the performance of a microprocessor based iron lung capable of thermistor triggering.

Methods: The effects of NPV with thermistor triggering were studied in four normal subjects and six patients with an acute exacerbation of chronic obstructive pulmonary disease (COPD) by measuring: (1) the time delay (TDtr) between the onset of inspiratory airflow and the start of assisted breathing; (2) the pressure-time product of the diaphragm (PTPdi); and (3) non-triggering inspiratory efforts (NonTrEf). In patients the effects of negative extrathoracic end expiratory pressure (NEEP) added to NPV were also evaluated.

Results: With increasing trigger sensitivity the mean (SE) TDtr ranged from 0.29 (0.02) s to 0.21 (0.01) s (mean difference 0.08 s, 95% CI 0.05 to 0.12) in normal subjects and from 0.30 (0.02) s to 0.21 (0.01) s (mean difference 0.09 s, 95% CI 0.06 to 0.12) in patients with COPD; NonTrEf ranged from 8.2 (1.8)% to 1.2 (0.1)% of the total breaths in normal subjects and from 11.8 (2.2)% to 2.5 (0.4)% in patients with COPD. Compared with spontaneous breathing, PTPdi decreased significantly with NPV both in normal subjects and in patients with COPD. NEEP added to NPV resulted in a significant decrease in dynamic intrinsic PEEP, diaphragm effort exerted in the pre-trigger phase, and NonTrEf.

Conclusions: Microprocessor based iron lung capable of thermistor triggering was able to perform assist NPV with acceptable TDtr, significant unloading of the diaphragm, and a low rate of NonTrEf. NEEP added to NPV improved the synchrony between the patient and the ventilator.

Full Text

The Full Text of this article is available as a PDF (142.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AGOSTONI E., RAHN H. Abdominal and thoracic pressures at different lung volumes. J Appl Physiol. 1960 Nov;15:1087–1092. doi: 10.1152/jappl.1960.15.6.1087. [DOI] [PubMed] [Google Scholar]
  2. Aslanian P., El Atrous S., Isabey D., Valente E., Corsi D., Harf A., Lemaire F., Brochard L. Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med. 1998 Jan;157(1):135–143. doi: 10.1164/ajrccm.157.1.96-12052. [DOI] [PubMed] [Google Scholar]
  3. Corrado A., De Paola E., Gorini M., Messori A., Bruscoli G., Nutini S., Tozzi D., Ginanni R. Intermittent negative pressure ventilation in the treatment of hypoxic hypercapnic coma in chronic respiratory insufficiency. Thorax. 1996 Nov;51(11):1077–1082. doi: 10.1136/thx.51.11.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Corrado A., Gorini M., Ginanni R., Pelagatti C., Villella G., Buoncristiano U., Guidi F., Pagni E., Peris A., De Paola E. Negative pressure ventilation versus conventional mechanical ventilation in the treatment of acute respiratory failure in COPD patients. Eur Respir J. 1998 Sep;12(3):519–525. doi: 10.1183/09031936.98.12030519. [DOI] [PubMed] [Google Scholar]
  5. Corrado A., Gorini M., Villella G., De Paola E. Negative pressure ventilation in the treatment of acute respiratory failure: an old noninvasive technique reconsidered. Eur Respir J. 1996 Jul;9(7):1531–1544. doi: 10.1183/09031936.96.09071531. [DOI] [PubMed] [Google Scholar]
  6. Dick C. R., Sassoon C. S. Patient-ventilator interactions. Clin Chest Med. 1996 Sep;17(3):423–438. doi: 10.1016/s0272-5231(05)70325-7. [DOI] [PubMed] [Google Scholar]
  7. FRANK N. R., MEAD J., FERRIS B. G., Jr The mechanical behavior of the lungs in healthy elderly persons. J Clin Invest. 1957 Dec;36(12):1680–1687. doi: 10.1172/JCI103569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fernández R., Benito S., Blanch L., Net A. Intrinsic PEEP: a cause of inspiratory muscle ineffectivity. Intensive Care Med. 1988;15(1):51–52. doi: 10.1007/BF00255638. [DOI] [PubMed] [Google Scholar]
  9. Gorini M., Corrado A., Villella G., Ginanni R., Augustynen A., Tozzi D. Physiologic effects of negative pressure ventilation in acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001 Jun;163(7):1614–1618. doi: 10.1164/ajrccm.163.7.2012079. [DOI] [PubMed] [Google Scholar]
  10. Hillberg R. E., Johnson D. C. Noninvasive ventilation. N Engl J Med. 1997 Dec 11;337(24):1746–1752. doi: 10.1056/NEJM199712113372407. [DOI] [PubMed] [Google Scholar]
  11. Lessard M. R., Lofaso F., Brochard L. Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med. 1995 Feb;151(2 Pt 1):562–569. doi: 10.1164/ajrccm.151.2.7842221. [DOI] [PubMed] [Google Scholar]
  12. Leung P., Jubran A., Tobin M. J. Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med. 1997 Jun;155(6):1940–1948. doi: 10.1164/ajrccm.155.6.9196100. [DOI] [PubMed] [Google Scholar]
  13. Levy R. D., Cosio M. G., Gibbons L., Macklem P. T., Martin J. G. Induction of sleep apnoea with negative pressure ventilation in patients with chronic obstructive lung disease. Thorax. 1992 Aug;47(8):612–615. doi: 10.1136/thx.47.8.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nava S., Ambrosino N., Bruschi C., Confalonieri M., Rampulla C. Physiological effects of flow and pressure triggering during non-invasive mechanical ventilation in patients with chronic obstructive pulmonary disease. Thorax. 1997 Mar;52(3):249–254. doi: 10.1136/thx.52.3.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nava S., Bruschi C., Rubini F., Palo A., Iotti G., Braschi A. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med. 1995 Nov;21(11):871–879. doi: 10.1007/BF01712327. [DOI] [PubMed] [Google Scholar]
  16. Ninane V. "Intrinsic" PEEP (PEEPi): role of expiratory muscles. Eur Respir J. 1997 Mar;10(3):516–518. [PubMed] [Google Scholar]
  17. Pepe P. E., Marini J. J. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect. Am Rev Respir Dis. 1982 Jul;126(1):166–170. doi: 10.1164/arrd.1982.126.1.166. [DOI] [PubMed] [Google Scholar]
  18. Quanjer P. H., Tammeling G. J., Cotes J. E., Pedersen O. F., Peslin R., Yernault J. C. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993 Mar;16:5–40. [PubMed] [Google Scholar]
  19. Sanna A., Veriter C., Stănescu D. Upper airway obstruction induced by negative-pressure ventilation in awake healthy subjects. J Appl Physiol (1985) 1993 Aug;75(2):546–552. doi: 10.1152/jappl.1993.75.2.546. [DOI] [PubMed] [Google Scholar]
  20. Sassoon C. S., Light R. W., Lodia R., Sieck G. C., Mahutte C. K. Pressure-time product during continuous positive airway pressure, pressure support ventilation, and T-piece during weaning from mechanical ventilation. Am Rev Respir Dis. 1991 Mar;143(3):469–475. doi: 10.1164/ajrccm/143.3.469. [DOI] [PubMed] [Google Scholar]
  21. Smith T. C., Marini J. J. Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol (1985) 1988 Oct;65(4):1488–1499. doi: 10.1152/jappl.1988.65.4.1488. [DOI] [PubMed] [Google Scholar]
  22. Tobin M. J. Mechanical ventilation. N Engl J Med. 1994 Apr 14;330(15):1056–1061. doi: 10.1056/NEJM199404143301507. [DOI] [PubMed] [Google Scholar]
  23. Yan S., Kayser B., Tobiasz M., Sliwinski P. Comparison of static and dynamic intrinsic positive end-expiratory pressure using the Campbell diagram. Am J Respir Crit Care Med. 1996 Oct;154(4 Pt 1):938–944. doi: 10.1164/ajrccm.154.4.8887589. [DOI] [PubMed] [Google Scholar]
  24. Zakynthinos S. G., Vassilakopoulos T., Zakynthinos E., Mavrommatis A., Roussos C. Contribution of expiratory muscle pressure to dynamic intrinsic positive end-expiratory pressure: validation using the Campbell diagram. Am J Respir Crit Care Med. 2000 Nov;162(5):1633–1640. doi: 10.1164/ajrccm.162.5.9903084. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES