Abstract
Background: In infants the impedance of the nasal pathways (Zn) is a significant proportion of the total respiratory impedance (Zrs).
Methods: In 11 infants Zrs was partitioned into Zn and lower respiratory system impedance (Zlrs) using a nasal catheter. A low frequency oscillatory signal (0.5–20 Hz) was applied during a pause in breathing to obtain the impedance spectra. A model of the respiratory system containing an airway and tissue compartment was then fitted to Zrs and Zlrs. The airway compartment consisted of a frequency independent resistance (R) and inertance (I), while the tissue compartment was described by coefficients of tissue damping (G) and elastance (H).
Results: Zrs could be reliably partitioned into Zn and Zlrs. The nasal pathway acted as a purely resistive-inertive impedance and contributed approximately half of the airway resistance (mean (SE) 44.6 (4.9)%) and most of the respiratory system inertance (71.7 (3.5)%).
Conclusion: In studies investigating changes in airway resistance in nasally breathing infants, the separation of nasal and lower respiratory system mechanics will increase the sensitivity of the tests.
Full Text
The Full Text of this article is available as a PDF (118.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Canbay E. I., Bhatia S. N. A comparison of nasal resistance in white Caucasians and blacks. Am J Rhinol. 1997 Jan-Feb;11(1):73–75. doi: 10.2500/105065897781446801. [DOI] [PubMed] [Google Scholar]
- Desager K. N., Willemen M., Van Bever H. P., De Backer W., Vermeire P. A. Evaluation of nasal impedance using the forced oscillation technique in infants. Pediatr Pulmonol. 1991;11(1):1–7. doi: 10.1002/ppul.1950110102. [DOI] [PubMed] [Google Scholar]
- Fullton J. M., Drake A. F., Fischer N. D., Bromberg P. A. Frequency dependence of effective nasal resistance. Ann Otol Rhinol Laryngol. 1984 Mar-Apr;93(2 Pt 1):140–145. doi: 10.1177/000348948409300208. [DOI] [PubMed] [Google Scholar]
- Hall G. L., Hantos Z., Wildhaber J. H., Peták F., Sly P. D. Methacholine responsiveness in infants assessed with low frequency forced oscillation and forced expiration techniques. Thorax. 2001 Jan;56(1):42–47. doi: 10.1136/thorax.56.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hantos Z., Adamicza A., Govaerts E., Daróczy B. Mechanical impedances of lungs and chest wall in the cat. J Appl Physiol (1985) 1992 Aug;73(2):427–433. doi: 10.1152/jappl.1992.73.2.427. [DOI] [PubMed] [Google Scholar]
- Hantos Z., Daróczy B., Suki B., Nagy S., Fredberg J. J. Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol (1985) 1992 Jan;72(1):168–178. doi: 10.1152/jappl.1992.72.1.168. [DOI] [PubMed] [Google Scholar]
- Hayden M. J., Petak F., Hantos Z., Hall G., Sly P. D. Using low-frequency oscillation to detect bronchodilator responsiveness in infants. Am J Respir Crit Care Med. 1998 Feb;157(2):574–579. doi: 10.1164/ajrccm.157.2.9703089. [DOI] [PubMed] [Google Scholar]
- Kano S., Pedersen O. F., Sly P. D. Nasal response to inhaled histamine measured by acoustic rhinometry in infants. Pediatr Pulmonol. 1994 May;17(5):312–319. doi: 10.1002/ppul.1950170508. [DOI] [PubMed] [Google Scholar]
- Lacourt G., Polgar G. Interaction between nasal and pulmonary resistance in newborn infants. J Appl Physiol. 1971 Jun;30(6):870–873. doi: 10.1152/jappl.1971.30.6.870. [DOI] [PubMed] [Google Scholar]
- Lorino A. M., Lofaso F., Abi-Nader F., Drogou I., Dahan E., Zerah F., Harf A., Lorino H. Nasal airflow resistance measurement: forced oscillation technique versus posterior rhinomanometry. Eur Respir J. 1998 Mar;11(3):720–725. [PubMed] [Google Scholar]
- Lorino A. M., Lofaso F., Drogou I., Abi-Nader F., Dahan E., Coste A., Lorino H. Effects of different mechanical treatments on nasal resistance assessed by rhinometry. Chest. 1998 Jul;114(1):166–170. doi: 10.1378/chest.114.1.166. [DOI] [PubMed] [Google Scholar]
- Peták F., Hayden M. J., Hantos Z., Sly P. D. Volume dependence of respiratory impedance in infants. Am J Respir Crit Care Med. 1997 Oct;156(4 Pt 1):1172–1177. doi: 10.1164/ajrccm.156.4.9701049. [DOI] [PubMed] [Google Scholar]
- Polgar G., Kong G. P. The nasal resistance of newborn infants. J Pediatr. 1965 Oct;67(4):557–567. doi: 10.1016/s0022-3476(65)80425-5. [DOI] [PubMed] [Google Scholar]
- Saito A., Nishihata S. Nasal airway resistance in children. Rhinology. 1981 Sep;19(3):149–154. [PubMed] [Google Scholar]
- Sly P. D., Hayden M. J., Peták F., Hantos Z. Measurement of low-frequency respiratory impedance in infants. Am J Respir Crit Care Med. 1996 Jul;154(1):161–166. doi: 10.1164/ajrccm.154.1.8680673. [DOI] [PubMed] [Google Scholar]
- Solow B., Peitersen B. Nasal airway resistance in the newborn. Rhinology. 1991 Mar;29(1):27–33. [PubMed] [Google Scholar]
- Stocks J. Effect of nasogastric tubes on nasal resistance during infancy. Arch Dis Child. 1980 Jan;55(1):17–21. doi: 10.1136/adc.55.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stocks J., Godfrey S. Nasal resistance during infancy. Respir Physiol. 1978 Aug;34(2):233–246. doi: 10.1016/0034-5687(78)90031-2. [DOI] [PubMed] [Google Scholar]
- Sullivan K. J., Chang H. K. Steady and oscillatory transnasal pressure-flow relationships in healthy adults. J Appl Physiol (1985) 1991 Sep;71(3):983–992. doi: 10.1152/jappl.1991.71.3.983. [DOI] [PubMed] [Google Scholar]
- Szucs E., Kaufman L., Clement P. A. Nasal resistance--a reliable assessment of nasal patency? Clin Otolaryngol Allied Sci. 1995 Oct;20(5):390–395. doi: 10.1111/j.1365-2273.1995.tb00068.x. [DOI] [PubMed] [Google Scholar]
- Tawfik B., Sullivan K. J., Chang H. K. A new method to measure nasal impedance in spontaneously breathing adults. J Appl Physiol (1985) 1991 Jul;71(1):9–15. doi: 10.1152/jappl.1991.71.1.9. [DOI] [PubMed] [Google Scholar]
