Skip to main content
Thorax logoLink to Thorax
. 2002 Sep;57(9):779–783. doi: 10.1136/thorax.57.9.779

Increased blood carboxyhaemoglobin concentrations in inflammatory pulmonary diseases

H Yasuda 1, M Yamaya 1, M Yanai 1, T Ohrui 1, H Sasaki 1
PMCID: PMC1746434  PMID: 12200522

Abstract

Background: Exhaled carbon monoxide has been reported to increase in inflammatory pulmonary diseases and to be correlated with blood carboxyhaemoglobin (Hb-CO) concentration. A study was undertaken to determine whether arterial blood Hb-CO increases in patients with inflammatory pulmonary diseases.

Methods: The Hb-CO concentration in arterial blood was measured with a spectrophotometer in 34 normal control subjects, 24 patients with bronchial asthma, 52 patients with pneumonia, and 21 patients with idiopathic pulmonary fibrosis (IPF).

Results: The mean (SE) Hb-CO concentrations in patients with bronchial asthma during exacerbations (n=24, 1.05 (0.05)%), with pneumonia at the onset of illness (n=52, 1.08 (0.06)%), and with IPF (n=21, 1.03 (0.09)%) were significantly higher than those in control subjects (n=34, 0.60 (0.07)%) (mean difference 0.45% (95% confidence interval (CI) 0.23 to 0.67), p<0.01 in patients with bronchial asthma, mean difference 0.48% (95% CI 0.35 to 0.60), p<0.0001 in patients with pneumonia, and mean difference 0.43% (95% CI 0.26 to 0.61) p<0.001 in patients with IPF). In 20 patients with bronchial asthma the Hb-CO concentration decreased after 3 weeks of treatment with oral glucocorticoids (p<0.001). In 20 patients with pneumonia the Hb-CO concentration had decreased after 3 weeks when patients showed evidence of clinical improvement (p<0.001). The values of C-reactive protein (CRP), an acute phase protein, correlated with Hb-CO concentrations in patients with pneumonia (r=0.74, p<0.0001) and in those with IPF (r=0.46, p<0.01). In patients with bronchial asthma changes in Hb-CO concentrations were significantly correlated with those in forced expiratory volume in 1 second (FEV1) after 3 weeks (r=0.67, p<0.01). Exhaled carbon monoxide (CO) concentrations were correlated with Hb-CO concentrations (n=33, r=0.80, p<0.0001).

Conclusions: Hb-CO concentrations are increased in inflammatory pulmonary diseases including bronchial asthma, pneumonia, and IPF. Measurement of arterial Hb-CO may be a useful means of monitoring pulmonary inflammation.

Full Text

The Full Text of this article is available as a PDF (136.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antuni J. D., Kharitonov S. A., Hughes D., Hodson M. E., Barnes P. J. Increase in exhaled carbon monoxide during exacerbations of cystic fibrosis. Thorax. 2000 Feb;55(2):138–142. doi: 10.1136/thorax.55.2.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cantoni L., Rossi C., Rizzardini M., Gadina M., Ghezzi P. Interleukin-1 and tumour necrosis factor induce hepatic haem oxygenase. Feedback regulation by glucocorticoids. Biochem J. 1991 Nov 1;279(Pt 3):891–894. doi: 10.1042/bj2790891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chabot F., Mitchell J. A., Gutteridge J. M., Evans T. W. Reactive oxygen species in acute lung injury. Eur Respir J. 1998 Mar;11(3):745–757. [PubMed] [Google Scholar]
  4. Crystal R. G., Bitterman P. B., Rennard S. I., Hance A. J., Keogh B. A. Interstitial lung diseases of unknown cause. Disorders characterized by chronic inflammation of the lower respiratory tract (first of two parts). N Engl J Med. 1984 Jan 19;310(3):154–166. doi: 10.1056/NEJM198401193100304. [DOI] [PubMed] [Google Scholar]
  5. Crystal R. G., Fulmer J. D., Roberts W. C., Moss M. L., Line B. R., Reynolds H. Y. Idiopathic pulmonary fibrosis. Clinical, histologic, radiographic, physiologic, scintigraphic, cytologic, and biochemical aspects. Ann Intern Med. 1976 Dec;85(6):769–788. doi: 10.7326/0003-4819-85-6-769. [DOI] [PubMed] [Google Scholar]
  6. Fukushima T., Okinaga S., Sekizawa K., Ohrui T., Yamaya M., Sasaki H. The role of carbon monoxide in lucigenin-dependent chemiluminescence of rat alveolar macrophages. Eur J Pharmacol. 1995 Mar 15;289(1):103–107. doi: 10.1016/0922-4106(95)90174-4. [DOI] [PubMed] [Google Scholar]
  7. Goldstein R. H., Fine A. Potential therapeutic initiatives for fibrogenic lung diseases. Chest. 1995 Sep;108(3):848–855. doi: 10.1378/chest.108.3.848. [DOI] [PubMed] [Google Scholar]
  8. Hariharan M., VanNoord T., Greden J. F. A high-performance liquid-chromatographic method for routine simultaneous determination of nicotine and cotinine in plasma. Clin Chem. 1988 Apr;34(4):724–729. [PubMed] [Google Scholar]
  9. Henderson F. W., Reid H. F., Morris R., Wang O. L., Hu P. C., Helms R. W., Forehand L., Mumford J., Lewtas J., Haley N. J. Home air nicotine levels and urinary cotinine excretion in preschool children. Am Rev Respir Dis. 1989 Jul;140(1):197–201. doi: 10.1164/ajrccm/140.1.197. [DOI] [PubMed] [Google Scholar]
  10. Horvath I., Loukides S., Wodehouse T., Kharitonov S. A., Cole P. J., Barnes P. J. Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress. Thorax. 1998 Oct;53(10):867–870. doi: 10.1136/thx.53.10.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horváth I., Donnelly L. E., Kiss A., Paredi P., Kharitonov S. A., Barnes P. J. Raised levels of exhaled carbon monoxide are associated with an increased expression of heme oxygenase-1 in airway macrophages in asthma: a new marker of oxidative stress. Thorax. 1998 Aug;53(8):668–672. doi: 10.1136/thx.53.8.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jarvis M. J., Russell M. A., Saloojee Y. Expired air carbon monoxide: a simple breath test of tobacco smoke intake. Br Med J. 1980 Aug 16;281(6238):484–485. doi: 10.1136/bmj.281.6238.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karzai W., von Specht B. U., Parent C., Haberstroh J., Wollersen K., Natanson C., Banks S. M., Eichacker P. Q. G-CSF during Escherichia coli versus Staphylococcus aureus pneumonia in rats has fundamentally different and opposite effects. Am J Respir Crit Care Med. 1999 May;159(5 Pt 1):1377–1382. doi: 10.1164/ajrccm.159.5.9806082. [DOI] [PubMed] [Google Scholar]
  14. Keyse S. M., Applegate L. A., Tromvoukis Y., Tyrrell R. M. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts. Mol Cell Biol. 1990 Sep;10(9):4967–4969. doi: 10.1128/mcb.10.9.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kharitonov S. A., Yates D., Robbins R. A., Logan-Sinclair R., Shinebourne E. A., Barnes P. J. Increased nitric oxide in exhaled air of asthmatic patients. Lancet. 1994 Jan 15;343(8890):133–135. doi: 10.1016/s0140-6736(94)90931-8. [DOI] [PubMed] [Google Scholar]
  16. Kim Y. M., Bergonia H. A., Müller C., Pitt B. R., Watkins W. D., Lancaster J. R., Jr Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem. 1995 Mar 17;270(11):5710–5713. doi: 10.1074/jbc.270.11.5710. [DOI] [PubMed] [Google Scholar]
  17. Kohno N., Kyoizumi S., Awaya Y., Fukuhara H., Yamakido M., Akiyama M. New serum indicator of interstitial pneumonitis activity. Sialylated carbohydrate antigen KL-6. Chest. 1989 Jul;96(1):68–73. doi: 10.1378/chest.96.1.68. [DOI] [PubMed] [Google Scholar]
  18. Kovacs E. J., DiPietro L. A. Fibrogenic cytokines and connective tissue production. FASEB J. 1994 Aug;8(11):854–861. doi: 10.1096/fasebj.8.11.7520879. [DOI] [PubMed] [Google Scholar]
  19. Lavrovsky Y., Drummond G. S., Abraham N. G. Downregulation of the human heme oxygenase gene by glucocorticoids and identification of 56b regulatory elements. Biochem Biophys Res Commun. 1996 Jan 26;218(3):759–765. doi: 10.1006/bbrc.1996.0135. [DOI] [PubMed] [Google Scholar]
  20. Maines M. D. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–554. doi: 10.1146/annurev.pharmtox.37.1.517. [DOI] [PubMed] [Google Scholar]
  21. Massaro A. F., Gaston B., Kita D., Fanta C., Stamler J. S., Drazen J. M. Expired nitric oxide levels during treatment of acute asthma. Am J Respir Crit Care Med. 1995 Aug;152(2):800–803. doi: 10.1164/ajrccm.152.2.7633745. [DOI] [PubMed] [Google Scholar]
  22. McCormack D. G., Paterson N. A. Loss of hypoxic pulmonary vasoconstriction in chronic pneumonia is not mediated by nitric oxide. Am J Physiol. 1993 Nov;265(5 Pt 2):H1523–H1528. doi: 10.1152/ajpheart.1993.265.5.H1523. [DOI] [PubMed] [Google Scholar]
  23. Monma M., Yamaya M., Sekizawa K., Ikeda K., Suzuki N., Kikuchi T., Takasaka T., Sasaki H. Increased carbon monoxide in exhaled air of patients with seasonal allergic rhinitis. Clin Exp Allergy. 1999 Nov;29(11):1537–1541. doi: 10.1046/j.1365-2222.1999.00684.x. [DOI] [PubMed] [Google Scholar]
  24. Nathan C., Xie Q. W. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 May 13;269(19):13725–13728. [PubMed] [Google Scholar]
  25. Otterbein L., Sylvester S. L., Choi A. M. Hemoglobin provides protection against lethal endotoxemia in rats: the role of heme oxygenase-1. Am J Respir Cell Mol Biol. 1995 Nov;13(5):595–601. doi: 10.1165/ajrcmb.13.5.7576696. [DOI] [PubMed] [Google Scholar]
  26. Paredi P., Kharitonov S. A., Loukides S., Pantelidis P., du Bois R. M., Barnes P. J. Exhaled nitric oxide is increased in active fibrosing alveolitis. Chest. 1999 May;115(5):1352–1356. doi: 10.1378/chest.115.5.1352. [DOI] [PubMed] [Google Scholar]
  27. Paredi P., Shah P. L., Montuschi P., Sullivan P., Hodson M. E., Kharitonov S. A., Barnes P. J. Increased carbon monoxide in exhaled air of patients with cystic fibrosis. Thorax. 1999 Oct;54(10):917–920. doi: 10.1136/thx.54.10.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Persson M. G., Zetterström O., Agrenius V., Ihre E., Gustafsson L. E. Single-breath nitric oxide measurements in asthmatic patients and smokers. Lancet. 1994 Jan 15;343(8890):146–147. doi: 10.1016/s0140-6736(94)90935-0. [DOI] [PubMed] [Google Scholar]
  29. Schlesinger M. J. How the cell copes with stress and the function of heat shock proteins. Pediatr Res. 1994 Jul;36(1 Pt 1):1–6. doi: 10.1203/00006450-199407001-00001. [DOI] [PubMed] [Google Scholar]
  30. Stockley R. A. Role of inflammation in respiratory tract infections. Am J Med. 1995 Dec 29;99(6B):8S–13S. doi: 10.1016/s0002-9343(99)80304-0. [DOI] [PubMed] [Google Scholar]
  31. Togores B., Bosch M., Agustí A. G. The measurement of exhaled carbon monoxide is influenced by airflow obstruction. Eur Respir J. 2000 Jan;15(1):177–180. doi: 10.1183/09031936.00.15117700. [DOI] [PubMed] [Google Scholar]
  32. Uasuf C. G., Jatakanon A., James A., Kharitonov S. A., Wilson N. M., Barnes P. J. Exhaled carbon monoxide in childhood asthma. J Pediatr. 1999 Nov;135(5):569–574. doi: 10.1016/s0022-3476(99)70054-5. [DOI] [PubMed] [Google Scholar]
  33. Vreman H. J., Wong R. J., Stevenson D. K. Exhaled carbon monoxide in asthma. J Pediatr. 2000 Dec;137(6):889–891. doi: 10.1067/mpd.2000.107625. [DOI] [PubMed] [Google Scholar]
  34. Yamada N., Yamaya M., Okinaga S., Lie R., Suzuki T., Nakayama K., Takeda A., Yamaguchi T., Itoyama Y., Sekizawa K. Protective effects of heme oxygenase-1 against oxidant-induced injury in the cultured human tracheal epithelium. Am J Respir Cell Mol Biol. 1999 Sep;21(3):428–435. doi: 10.1165/ajrcmb.21.3.3501. [DOI] [PubMed] [Google Scholar]
  35. Yamada N., Yamaya M., Okinaga S., Nakayama K., Sekizawa K., Shibahara S., Sasaki H. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet. 2000 Jan;66(1):187–195. doi: 10.1086/302729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yamaya M., Sekizawa K., Ishizuka S., Monma M., Mizuta K., Sasaki H. Increased carbon monoxide in exhaled air of subjects with upper respiratory tract infections. Am J Respir Crit Care Med. 1998 Jul;158(1):311–314. doi: 10.1164/ajrccm.158.1.9711066. [DOI] [PubMed] [Google Scholar]
  37. Yamaya M., Sekizawa K., Ishizuka S., Monma M., Sasaki H., Yamara M. Exhaled carbon monoxide levels during treatment of acute asthma. Eur Respir J. 1999 Apr;13(4):757–760. doi: 10.1034/j.1399-3003.1999.13d10.x. [DOI] [PubMed] [Google Scholar]
  38. Yokoyama A., Kohno N., Hamada H., Sakatani M., Ueda E., Kondo K., Hirasawa Y., Hiwada K. Circulating KL-6 predicts the outcome of rapidly progressive idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1998 Nov;158(5 Pt 1):1680–1684. doi: 10.1164/ajrccm.158.5.9803115. [DOI] [PubMed] [Google Scholar]
  39. Zayasu K., Sekizawa K., Okinaga S., Yamaya M., Ohrui T., Sasaki H. Increased carbon monoxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med. 1997 Oct;156(4 Pt 1):1140–1143. doi: 10.1164/ajrccm.156.4.96-08056. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES