Skip to main content
Thorax logoLink to Thorax
. 2003 Mar;58(3):237–241. doi: 10.1136/thorax.58.3.237

Passive smoking and lung function in α1-antitrypsin heterozygote schoolchildren

G Corbo 1, F Forastiere 1, N Agabiti 1, V Dell'Orco 1, R Pistelli 1, G Massi 1, C Perucci 1, S Valente 1
PMCID: PMC1746588  PMID: 12612303

Abstract

Methods: The effect of passive smoking on lung function was investigated in a cross sectional study of 997 primary and secondary schoolchildren aged 11–13 years categorised by Pi phenotype as either PiM homozygotes or Pi heterozygotes. Data on respiratory health and risk factors were collected by questionnaire, lung function was measured by spirometric tests, bronchial hyperresponsiveness was evaluated by methacholine test, atopic status was evaluated by skin prick testing, and a blood sample was collected to determine Pi phenotype. Urinary cotinine and creatinine concentrations were determined and assessment of exposure was made from questionnaire data and urinary cotinine concentrations. The results were analysed by multiple regression analysis.

Results: Sixty one subjects (6.1%) were found to be Pi heterozygotes. Lung function did not differ between homozygotes and heterozygotes. There was a reduction in lung function in subjects exposed to parental smoking in the overall sample: FEV1/FVC ratio (-0.78%), FEF25-75 (-0.11 litres), and FEF75 (-0.13 litres). Interaction terms between parental smoking and Pi status were significant with regard to FEV1/FVC ratio (p=0.035) and FEF50 (p=0.023). In subjects exposed to parental smoking the decrement in lung function in Pi heterozygotes tended to be greater (FEV1/FVC ratio = -2.57, FEF25–75 = -0.30, FEF50 = -0.43, and FEF75 = -0.29) than in PiM homozygotes. These results did not change significantly when the urinary cotinine concentration was used as an exposure variable.

Conclusions: The detrimental effect of environmental tobacco smoke on lung function in schoolchildren is confirmed. This harmful effect is greater in Pi heterozygotes than in PiM homozygotes.

Full Text

The Full Text of this article is available as a PDF (148.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agabiti N., Mallone S., Forastiere F., Corbo G. M., Ferro S., Renzoni E., Sestini P., Rusconi F., Ciccone G., Viegi G. The impact of parental smoking on asthma and wheezing. SIDRIA Collaborative Group. Studi Italiani sui Disturbi Respiratori nell'Infanzia e l'Ambiente. Epidemiology. 1999 Nov;10(6):692–698. doi: 10.1097/00001648-199911000-00005. [DOI] [PubMed] [Google Scholar]
  2. Bruce R. M., Cohen B. H., Diamond E. L., Fallat R. J., Knudson R. J., Lebowitz M. D., Mittman C., Patterson C. D., Tockman M. S. Collaborative study to assess risk of lung disease in Pi MZ phenotype subjects. Am Rev Respir Dis. 1984 Sep;130(3):386–390. doi: 10.1164/arrd.1984.130.3.386. [DOI] [PubMed] [Google Scholar]
  3. Carey I. M., Cook D. G., Strachan D. P. The effects of environmental tobacco smoke exposure on lung function in a longitudinal study of British adults. Epidemiology. 1999 May;10(3):319–326. [PubMed] [Google Scholar]
  4. Colp C., Pappas J., Moran D., Lieberman J. Variants of alpha 1-antitrypsin in Puerto Rican children with asthma. Chest. 1993 Mar;103(3):812–815. doi: 10.1378/chest.103.3.812. [DOI] [PubMed] [Google Scholar]
  5. Colp C., Talavera W., Goldman D., Green J., Multz A., Lieberman J. Profile of bronchospastic disease in Puerto Rican patients in New York City. A possible relationship to alpha 1-antitrypsin variants. Arch Intern Med. 1990 Nov;150(11):2349–2354. [PubMed] [Google Scholar]
  6. Corbo G. M., Agabiti N., Forastiere F., Dell'Orco V., Pistelli R., Kriebel D., Pacifici R., Zuccaro P., Ciappi G., Perucci C. A. Lung function in children and adolescents with occasional exposure to environmental tobacco smoke. Am J Respir Crit Care Med. 1996 Sep;154(3 Pt 1):695–700. doi: 10.1164/ajrccm.154.3.8810607. [DOI] [PubMed] [Google Scholar]
  7. Dell'Orco V., Forastiere F., Agabiti N., Corbo G. M., Pistelli R., Pacifici R., Zuccaro P., Pizzabiocca A., Rosa M., Altieri I. Household and community determinants of exposure to involuntary smoking: a study of urinary cotinine in children and adolescents. Am J Epidemiol. 1995 Aug 15;142(4):419–427. doi: 10.1093/oxfordjournals.aje.a117650. [DOI] [PubMed] [Google Scholar]
  8. Forastiere F., Agabiti N., Corbo G. M., Pistelli R., Dell'Orco V., Ciappi G., Perucci C. A. Passive smoking as a determinant of bronchial responsiveness in children. Am J Respir Crit Care Med. 1994 Feb;149(2 Pt 1):365–370. doi: 10.1164/ajrccm.149.2.8306031. [DOI] [PubMed] [Google Scholar]
  9. Massi G., Cotumaccio R., Auconi P. Alpha-1-antitrypsin (alpha 1AT) phenotypes and PiM subtypes in Italy. Evidence of considerable geographic variability. Hum Genet. 1982;61(1):76–77. doi: 10.1007/BF00291340. [DOI] [PubMed] [Google Scholar]
  10. Massi G., Marano G., Patalano F., Auconi P. Silver-stained phenotyping of alpha 1-antitrypsin in dried blood and serum specimens. Clin Chem. 1984 Oct;30(10):1674–1676. [PubMed] [Google Scholar]
  11. Mittman C., Lieberman J., Rumsfeld J. Prevalence of abnormal protease inhibitor phenotypes in patients with chronic obstructive lung disease. Am Rev Respir Dis. 1974 Feb;109(2):295–296. doi: 10.1164/arrd.1974.109.2.295. [DOI] [PubMed] [Google Scholar]
  12. Morse J. O. Alpha1-antitrypsin deficiency (second of two parts). N Engl J Med. 1978 Nov 16;299(20):1099–1105. doi: 10.1056/NEJM197811162992003. [DOI] [PubMed] [Google Scholar]
  13. Sandford A. J., Chagani T., Weir T. D., Connett J. E., Anthonisen N. R., Paré P. D. Susceptibility genes for rapid decline of lung function in the lung health study. Am J Respir Crit Care Med. 2001 Feb;163(2):469–473. doi: 10.1164/ajrccm.163.2.2006158. [DOI] [PubMed] [Google Scholar]
  14. Sigsgaard T., Brandslund I., Omland O., Hjort C., Lund E. D., Pedersen O. F., Miller M. R. S and Z alpha1-antitrypsin alleles are risk factors for bronchial hyperresponsiveness in young farmers: an example of gene/environment interaction. Eur Respir J. 2000 Jul;16(1):50–55. doi: 10.1034/j.1399-3003.2000.16a09.x. [DOI] [PubMed] [Google Scholar]
  15. Strachan D. P., Jarvis M. J., Feyerabend C. The relationship of salivary cotinine to respiratory symptoms, spirometry, and exercise-induced bronchospasm in seven-year-old children. Am Rev Respir Dis. 1990 Jul;142(1):147–151. doi: 10.1164/ajrccm/142.1.147. [DOI] [PubMed] [Google Scholar]
  16. Tarján E., Magyar P., Váczi Z., Lantos A., Vaszár L. Longitudinal lung function study in heterozygous PiMZ phenotype subjects. Eur Respir J. 1994 Dec;7(12):2199–2204. doi: 10.1183/09031936.94.07122199. [DOI] [PubMed] [Google Scholar]
  17. Townley R. G., Southard J. G., Radford P., Hopp R. J., Bewtra A. K., Ford L. Association of MS Pi phenotype with airway hyperresponsiveness. Chest. 1990 Sep;98(3):594–599. doi: 10.1378/chest.98.3.594. [DOI] [PubMed] [Google Scholar]
  18. Turino G. M., Barker A. F., Brantly M. L., Cohen A. B., Connelly R. P., Crystal R. G., Eden E., Schluchter M. D., Stoller J. K. Clinical features of individuals with PI*SZ phenotype of alpha 1-antitrypsin deficiency. alpha 1-Antitrypsin Deficiency Registry Study Group. Am J Respir Crit Care Med. 1996 Dec;154(6 Pt 1):1718–1725. doi: 10.1164/ajrccm.154.6.8970361. [DOI] [PubMed] [Google Scholar]
  19. von Ehrenstein O. S., von Mutius E., Maier E., Hirsch T., Carr D., Schaal W., Roscher A. A., Olgemöller B., Nicolai T., Weiland S. K. Lung function of school children with low levels of alpha1-antitrypsin and tobacco smoke exposure. Eur Respir J. 2002 Jun;19(6):1099–1106. doi: 10.1183/09031936.02.00104302. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES