Skip to main content
Thorax logoLink to Thorax
. 2003 Mar;58(3):217–221. doi: 10.1136/thorax.58.3.217

Bronchodilation by an inhaled VPAC2 receptor agonist in patients with stable asthma

A Linden 1, L Hansson 1, A Andersson 1, M Palmqvist 1, P Arvidsson 1, C Lofdahl 1, P Larsson 1, J Lotvall 1
PMCID: PMC1746614  PMID: 12612296

Abstract

Background: The synthetic vasoactive intestinal peptide (VIP) analogue Ro 25-1553 is a selective VIP-PACAP type 2 (VPAC2) receptor agonist that causes a bronchodilatory effect in guinea pigs in vivo. The effect of Ro 25-1553 given by inhalation to patients with asthma was studied and compared with that of a long acting ß2 adrenoceptor agonist.

Methods: Twenty four patients with moderate stable asthma participated in a double blind, randomised, placebo controlled, crossover study. The primary variable was bronchodilatory effect (increase in forced expiratory volume in 1 second, FEV1) after inhalation of Ro 25-1553 (100 µg or 600 µg) and formoterol (4.5 µg), respectively. Putative side effects were characterised by monitoring sitting blood pressure, serum potassium, electrocardiography and echocardiography.

Results: Inhalation of 600 µg Ro 25-1553 caused a rapid bronchodilatory effect (geometric mean increase in FEV1 compared with placebo) within 3 minutes of 6% (95% CI 4 to 9), as did inhalation of formoterol (8% (95% CI 5 to 10)). The corresponding maximum bronchodilatory effect during 24 hours was similar for 600 µg Ro 25-1553 (7% (95% CI 4 to 10)) and the reference bronchodilator formoterol (10% (95% CI 7 to 12)). However, for both doses of Ro 25-1553 the bronchodilatory effect was attenuated 5 hours after inhalation whereas formoterol still had a bronchodilatory effect 12 hours after inhalation. Neither Ro 25-1553 nor formoterol produced any clinically relevant side effects. No drug related difference in adverse events was observed.

Conclusion: Inhalation of a synthetic selective VPAC2 receptor agonist constitutes a promising approach for bronchodilation in patients with asthma.

Full Text

The Full Text of this article is available as a PDF (147.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhogal R., Sheldrick R. L., Coleman R. A., Smith D. M., Bloom S. R. The effects of PACAP and VIP on guinea pig tracheal smooth muscle in vitro. Peptides. 1994;15(7):1237–1241. doi: 10.1016/0196-9781(94)90147-3. [DOI] [PubMed] [Google Scholar]
  2. Bolin D. R., Michalewsky J., Wasserman M. A., O'Donnell M. Design and development of a vasoactive intestinal peptide analog as a novel therapeutic for bronchial asthma. Biopolymers. 1995;37(2):57–66. doi: 10.1002/bip.360370203. [DOI] [PubMed] [Google Scholar]
  3. Conroy D. M., St-Pierre S., Sirois P. Relaxant effects of pituitary adenylate cyclase activating polypeptide (PACAP) on epithelium-intact and -denuded guinea-pig trachea: a comparison with vasoactive intestinal peptide (VIP). Neuropeptides. 1995 Sep;29(3):121–127. doi: 10.1016/0143-4179(95)90013-6. [DOI] [PubMed] [Google Scholar]
  4. Dewit D., Gourlet P., Amraoui Z., Vertongen P., Willems F., Robberecht P., Goldman M. The vasoactive intestinal peptide analogue RO25-1553 inhibits the production of TNF and IL-12 by LPS-activated monocytes. Immunol Lett. 1998 Jan;60(1):57–60. doi: 10.1016/s0165-2478(97)00129-6. [DOI] [PubMed] [Google Scholar]
  5. Dey R. D., Shannon W. A., Jr, Said S. I. Localization of VIP-immunoreactive nerves in airways and pulmonary vessels of dogs, cat, and human subjects. Cell Tissue Res. 1981;220(2):231–238. doi: 10.1007/BF00210505. [DOI] [PubMed] [Google Scholar]
  6. Foda H. D., Sharaf H. H., Absood A., Said S. I. Pituitary adenylate cyclase-activating peptide (PACAP), a VIP-like peptide, has prolonged airway smooth muscle relaxant activity. Peptides. 1995;16(6):1057–1061. doi: 10.1016/0196-9781(95)00087-z. [DOI] [PubMed] [Google Scholar]
  7. Franconi G. M., Graf P. D., Lazarus S. C., Nadel J. A., Caughey G. H. Mast cell tryptase and chymase reverse airway smooth muscle relaxation induced by vasoactive intestinal peptide in the ferret. J Pharmacol Exp Ther. 1989 Mar;248(3):947–951. [PubMed] [Google Scholar]
  8. Golan Yoav, Onn Amir, Villa Yael, Avidor Yoav, Kivity Shmuel, Berger Stephen A., Shapira Itzhak, Levo Yoram, Giladi Michael. Asthma in adventure travelers: a prospective study evaluating the occurrence and risk factors for acute exacerbations. Arch Intern Med. 2002 Nov 25;162(21):2421–2426. doi: 10.1001/archinte.162.21.2421. [DOI] [PubMed] [Google Scholar]
  9. Gourlet P., Vertongen P., Vandermeers A., Vandermeers-Piret M. C., Rathe J., De Neef P., Waelbroeck M., Robberecht P. The long-acting vasoactive intestinal polypeptide agonist RO 25-1553 is highly selective of the VIP2 receptor subclass. Peptides. 1997;18(3):403–408. doi: 10.1016/s0196-9781(96)00322-1. [DOI] [PubMed] [Google Scholar]
  10. Juarranz M. G., Van Rampelbergh J., Gourlet P., De Neef P., Cnudde J., Robberecht P., Waelbroeck M. Different vasoactive intestinal polypeptide receptor domains are involved in the selective recognition of two VPAC(2)-selective ligands. Mol Pharmacol. 1999 Dec;56(6):1280–1287. doi: 10.1124/mol.56.6.1280. [DOI] [PubMed] [Google Scholar]
  11. Kanemura T., Tamaoki J., Chiyotani A., Takeyama K., Sakai N., Tagaya E., Konno K. Role of Na(+)-K(+)-ATPase in airway smooth muscle relaxation by vasoactive intestinal peptide and pituitary adenylate cyclase activating peptide. Res Commun Chem Pathol Pharmacol. 1993 Jan;79(1):11–22. [PubMed] [Google Scholar]
  12. Källström B. L., Waldeck B. Bronchodilating properties of the VIP receptor agonist Ro 25-1553 compared to those of formoterol on the guinea-pig isolated trachea. Eur J Pharmacol. 2001 Nov 2;430(2-3):335–340. doi: 10.1016/s0014-2999(01)01299-7. [DOI] [PubMed] [Google Scholar]
  13. Laitinen A., Partanen M., Hervonen A., Pelto-Huikko M., Laitinen L. A. VIP like immunoreactive nerves in human respiratory tract. Light and electron microscopic study. Histochemistry. 1985;82(4):313–319. doi: 10.1007/BF00494059. [DOI] [PubMed] [Google Scholar]
  14. Lilly C. M., Kobzik L., Hall A. E., Drazen J. M. Effects of chronic airway inflammation on the activity and enzymatic inactivation of neuropeptides in guinea pig lungs. J Clin Invest. 1994 Jun;93(6):2667–2674. doi: 10.1172/JCI117280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lilly C. M., Martins M. A., Drazen J. M. Peptidase modulation of vasoactive intestinal peptide pulmonary relaxation in tracheal superfused guinea pig lungs. J Clin Invest. 1993 Jan;91(1):235–243. doi: 10.1172/JCI116176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lindén A., Cardell L. O., Yoshihara S., Stjärne P., Nadel J. A. PACAP 1-38 as an inhaled bronchodilator in guinea pigs in vivo. Peptides. 1998;19(1):93–98. doi: 10.1016/s0196-9781(97)00256-8. [DOI] [PubMed] [Google Scholar]
  17. Morice A., Unwin R. J., Sever P. S. Vasoactive intestinal peptide causes bronchodilatation and protects against histamine-induced bronchoconstriction in asthmatic subjects. Lancet. 1983 Nov 26;2(8361):1225–1227. doi: 10.1016/s0140-6736(83)91272-2. [DOI] [PubMed] [Google Scholar]
  18. O'Donnell M., Garippa R. J., O'Neill N. C., Bolin D. R., Cottrell J. M. Structure-activity studies of vasoactive intestinal polypeptide. J Biol Chem. 1991 Apr 5;266(10):6389–6392. [PubMed] [Google Scholar]
  19. O'Donnell M., Garippa R. J., Rinaldi N., Selig W. M., Simko B., Renzetti L., Tannu S. A., Wasserman M. A., Welton A., Bolin D. R. Ro 25-1553: a novel, long-acting vasoactive intestinal peptide agonist. Part I: In vitro and in vivo bronchodilator studies. J Pharmacol Exp Ther. 1994 Sep;270(3):1282–1288. [PubMed] [Google Scholar]
  20. O'Donnell M., Garippa R. J., Rinaldi N., Selig W. M., Tocker J. E., Tannu S. A., Wasserman M. A., Welton A., Bolin D. R. Ro 25-1553: a novel, long-acting vasoactive intestinal peptide agonist. Part II: Effect on in vitro and in vivo models of pulmonary anaphylaxis. J Pharmacol Exp Ther. 1994 Sep;270(3):1289–1294. [PubMed] [Google Scholar]
  21. Palmer J. B., Cuss F. M., Warren J. B., Blank M., Bloom S. R., Barnes P. J. Effect of infused vasoactive intestinal peptide on airway function in normal subjects. Thorax. 1986 Sep;41(9):663–666. doi: 10.1136/thx.41.9.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Said S. I., Mutt V. Relationship of spasmogenic and smooth muscle relaxant peptides from normal lung to other vasoactive compounds. Nature. 1977 Jan 6;265(5589):84–86. doi: 10.1038/265084a0. [DOI] [PubMed] [Google Scholar]
  23. Sakai N., Tamaoki J., Kobayashi K., Kanemura T., Isono K., Takeyama K., Takeuchi S., Takizawa T. Vasoactive intestinal peptide stimulates ciliary motility in rabbit tracheal epithelium: modulation by neutral endopeptidase. Regul Pept. 1991 Jun 11;34(1):33–41. doi: 10.1016/0167-0115(91)90222-3. [DOI] [PubMed] [Google Scholar]
  24. Schmidt D. T., Rühlmann E., Waldeck B., Branscheid D., Luts A., Sundler F., Rabe K. F. The effect of the vasoactive intestinal polypeptide agonist Ro 25-1553 on induced tone in isolated human airways and pulmonary artery. Naunyn Schmiedebergs Arch Pharmacol. 2001 Oct;364(4):314–320. doi: 10.1007/s002100100458. [DOI] [PubMed] [Google Scholar]
  25. Tam E. K., Caughey G. H. Degradation of airway neuropeptides by human lung tryptase. Am J Respir Cell Mol Biol. 1990 Jul;3(1):27–32. doi: 10.1165/ajrcmb/3.1.27. [DOI] [PubMed] [Google Scholar]
  26. Tam E. K., Franconi G. M., Nadel J. A., Caughey G. H. Protease inhibitors potentiate smooth muscle relaxation induced by vasoactive intestinal peptide in isolated human bronchi. Am J Respir Cell Mol Biol. 1990 May;2(5):449–452. doi: 10.1165/ajrcmb/2.5.449. [DOI] [PubMed] [Google Scholar]
  27. Wong B. J., Dolovich J., Ramsdale E. H., O'Byrne P., Gontovnick L., Denburg J. A., Hargreave F. E. Formoterol compared with beclomethasone and placebo on allergen-induced asthmatic responses. Am Rev Respir Dis. 1992 Nov;146(5 Pt 1):1156–1160. doi: 10.1164/ajrccm/146.5_Pt_1.1156. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES