Skip to main content
Thorax logoLink to Thorax
. 2003 Jun;58(6):494–499. doi: 10.1136/thorax.58.6.494

Exhaled nitric oxide rather than lung function distinguishes preschool children with probable asthma

L Malmberg 1, A Pelkonen 1, T Haahtela 1, M Turpeinen 1
PMCID: PMC1746693  PMID: 12775859

Abstract

Background: Respiratory function and airway inflammation can be evaluated in preschool children with special techniques, but their relative power in identifying young children with asthma has not been studied. This study was undertaken to compare the value of exhaled nitric oxide (FENO), baseline lung function, and bronchodilator responsiveness in identifying children with newly detected probable asthma.

Methods: Ninety six preschool children (age 3.8–7.5 years) with asthmatic symptoms or history and 62 age matched healthy non-atopic controls were studied. FENO was measured with the standard online single exhalation technique, and baseline lung function and bronchodilator responsiveness were measured using impulse oscillometry (IOS).

Results: Children with probable asthma (n=21), characterised by recent recurrent wheeze, had a significantly higher mean (SE) concentration of FENO than controls (22.1 (3.4) ppb v 5.3 (0.4) ppb; mean difference 16.8 ppb, 95% CI 12.0 to 21.5) and also had higher baseline respiratory resistance, lower reactance, and larger bronchodilator responses expressed as the change in resistance after inhalation of salbutamol. Children with chronic cough only (n=46) also had significantly raised mean FENO (9.2 (1.5) ppb; mean difference 3.9 ppb, 95% CI 0.8 to 7.0) but their lung function was not significantly reduced. Children on inhaled steroids due to previously diagnosed asthma (n=29) differed from the controls only in their baseline lung function. The analysis of receiver operating characteristics (ROC) showed that FENO provided the best power for discriminating between children with probable asthma and healthy controls, with a sensitivity of 86% and specificity of 92% at the cut off level of 1.5 SD above predicted.

Conclusions: FENO is superior to baseline respiratory function and bronchodilator responsiveness in identifying preschool children with probable asthma. The results emphasise the presence of airway inflammation in the early stages of asthma, even in young children.

Full Text

The Full Text of this article is available as a PDF (170.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baraldi E., Dario C., Ongaro R., Scollo M., Azzolin N. M., Panza N., Paganini N., Zacchello F. Exhaled nitric oxide concentrations during treatment of wheezing exacerbation in infants and young children. Am J Respir Crit Care Med. 1999 Apr;159(4 Pt 1):1284–1288. doi: 10.1164/ajrccm.159.4.9807084. [DOI] [PubMed] [Google Scholar]
  2. Baraldi E., Scollo M., Zaramella C., Zanconato S., Zacchello F. A simple flow-driven method for online measurement of exhaled NO starting at the age of 4 to 5 years. Am J Respir Crit Care Med. 2000 Nov;162(5):1828–1832. doi: 10.1164/ajrccm.162.5.2002014. [DOI] [PubMed] [Google Scholar]
  3. Baraldi E., de Jongste J. C., European Respiratory Society/American Thoracic Society (ERS/ATS) Task Force Measurement of exhaled nitric oxide in children, 2001. Eur Respir J. 2002 Jul;20(1):223–237. doi: 10.1183/09031936.02.00293102. [DOI] [PubMed] [Google Scholar]
  4. Bisgaard H., Klug B. Lung function measurement in awake young children. Eur Respir J. 1995 Dec;8(12):2067–2075. doi: 10.1183/09031936.95.08122067. [DOI] [PubMed] [Google Scholar]
  5. Buchvald F., Bisgaard H. FeNO measured at fixed exhalation flow rate during controlled tidal breathing in children from the age of 2 yr. Am J Respir Crit Care Med. 2001 Mar;163(3 Pt 1):699–704. doi: 10.1164/ajrccm.163.3.2004233. [DOI] [PubMed] [Google Scholar]
  6. Chang A. B. Isolated cough: probably not asthma. Arch Dis Child. 1999 Mar;80(3):211–213. doi: 10.1136/adc.80.3.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chatkin J. M., Ansarin K., Silkoff P. E., McClean P., Gutierrez C., Zamel N., Chapman K. R. Exhaled nitric oxide as a noninvasive assessment of chronic cough. Am J Respir Crit Care Med. 1999 Jun;159(6):1810–1813. doi: 10.1164/ajrccm.159.6.9809047. [DOI] [PubMed] [Google Scholar]
  8. Colon-Semidey A. J., Marshik P., Crowley M., Katz R., Kelly H. W. Correlation between reversibility of airway obstruction and exhaled nitric oxide levels in children with stable bronchial asthma. Pediatr Pulmonol. 2000 Nov;30(5):385–392. doi: 10.1002/1099-0496(200011)30:5<385::aid-ppul4>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  9. Delacourt C., Lorino H., Herve-Guillot M., Reinert P., Harf A., Housset B. Use of the forced oscillation technique to assess airway obstruction and reversibility in children. Am J Respir Crit Care Med. 2000 Mar;161(3 Pt 1):730–736. doi: 10.1164/ajrccm.161.3.9904081. [DOI] [PubMed] [Google Scholar]
  10. Faniran A. O., Peat J. K., Woolcock A. J. Persistent cough: is it asthma? Arch Dis Child. 1998 Nov;79(5):411–414. doi: 10.1136/adc.79.5.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frank T. L., Adisesh A., Pickering A. C., Morrison J. F., Wright T., Francis H., Fletcher A., Frank P. I., Hannaford P. Relationship between exhaled nitric oxide and childhood asthma. Am J Respir Crit Care Med. 1998 Oct;158(4):1032–1036. doi: 10.1164/ajrccm.158.4.9707143. [DOI] [PubMed] [Google Scholar]
  12. Franklin P. J., Taplin R., Stick S. M. A community study of exhaled nitric oxide in healthy children. Am J Respir Crit Care Med. 1999 Jan;159(1):69–73. doi: 10.1164/ajrccm.159.1.9804134. [DOI] [PubMed] [Google Scholar]
  13. Gibson P. G., Henry R. L., Thomas P. Noninvasive assessment of airway inflammation in children: induced sputum, exhaled nitric oxide, and breath condensate. Eur Respir J. 2000 Nov;16(5):1008–1015. [PubMed] [Google Scholar]
  14. Hellinckx J., De Boeck K., Bande-Knops J., van der Poel M., Demedts M. Bronchodilator response in 3-6.5 years old healthy and stable asthmatic children. Eur Respir J. 1998 Aug;12(2):438–443. doi: 10.1183/09031936.98.12020438. [DOI] [PubMed] [Google Scholar]
  15. Klug B., Bisgaard H. Measurement of lung function in awake 2-4-year-old asthmatic children during methacholine challenge and acute asthma: a comparison of the impulse oscillation technique, the interrupter technique, and transcutaneous measurement of oxygen versus whole-body plethysmography. Pediatr Pulmonol. 1996 May;21(5):290–300. doi: 10.1002/(SICI)1099-0496(199605)21:5<290::AID-PPUL4>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  16. Malmberg L. P., Mieskonen S., Pelkonen A., Kari A., Sovijärvi A. R., Turpeinen M. Lung function measured by the oscillometric method in prematurely born children with chronic lung disease. Eur Respir J. 2000 Oct;16(4):598–603. doi: 10.1034/j.1399-3003.2000.16d05.x. [DOI] [PubMed] [Google Scholar]
  17. Malmberg L. P., Pelkonen A., Poussa T., Pohianpalo A., Haahtela T., Turpeinen M. Determinants of respiratory system input impedance and bronchodilator response in healthy Finnish preschool children. Clin Physiol Funct Imaging. 2002 Jan;22(1):64–71. [PubMed] [Google Scholar]
  18. Martinez Fernando D. Development of wheezing disorders and asthma in preschool children. Pediatrics. 2002 Feb;109(2 Suppl):362–367. [PubMed] [Google Scholar]
  19. McKenzie S. A., Bridge P. D., Healy M. J. Airway resistance and atopy in preschool children with wheeze and cough. Eur Respir J. 2000 May;15(5):833–838. doi: 10.1034/j.1399-3003.2000.15e04.x. [DOI] [PubMed] [Google Scholar]
  20. Merkus P. J., Mijnsbergen J. Y., Hop W. C., de Jongste J. C. Interrupter resistance in preschool children: measurement characteristics and reference values. Am J Respir Crit Care Med. 2001 May;163(6):1350–1355. doi: 10.1164/ajrccm.163.6.2005076. [DOI] [PubMed] [Google Scholar]
  21. Miller M. R., Pincock A. C. Predicted values: how should we use them? Thorax. 1988 Apr;43(4):265–267. doi: 10.1136/thx.43.4.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nielsen K. G., Bisgaard H. Discriminative capacity of bronchodilator response measured with three different lung function techniques in asthmatic and healthy children aged 2 to 5 years. Am J Respir Crit Care Med. 2001 Aug 15;164(4):554–559. doi: 10.1164/ajrccm.164.4.2006119. [DOI] [PubMed] [Google Scholar]
  23. Payne D. N., Adcock I. M., Wilson N. M., Oates T., Scallan M., Bush A. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am J Respir Crit Care Med. 2001 Oct 15;164(8 Pt 1):1376–1381. doi: 10.1164/ajrccm.164.8.2101145. [DOI] [PubMed] [Google Scholar]
  24. Piacentini G. L., Bodini A., Costella S., Suzuki Y., Zerman L., Peterson C. G., Boner A. L. Exhaled nitric oxide, serum ECP and airway responsiveness in mild asthmatic children. Eur Respir J. 2000 May;15(5):839–843. doi: 10.1034/j.1399-3003.2000.15e05.x. [DOI] [PubMed] [Google Scholar]
  25. Rytilä P., Metso T., Heikkinen K., Saarelainen P., Helenius I. J., Haahtela T. Airway inflammation in patients with symptoms suggesting asthma but with normal lung function. Eur Respir J. 2000 Nov;16(5):824–830. doi: 10.1183/09031936.00.16582400. [DOI] [PubMed] [Google Scholar]
  26. Scollo M., Zanconato S., Ongaro R., Zaramella C., Zacchello F., Baraldi E. Exhaled nitric oxide and exercise-induced bronchoconstriction in asthmatic children. Am J Respir Crit Care Med. 2000 Mar;161(3 Pt 1):1047–1050. doi: 10.1164/ajrccm.161.3.9905043. [DOI] [PubMed] [Google Scholar]
  27. Visser M. J., de Wit M. C., van Aalderen W. M., Postma D. S., Brand P. L. Exhaled nitric oxide in children measured by tidal breathing method: differences between asthmatics and nonasthmatic controls. Pediatr Pulmonol. 2000 Jun;29(6):434–437. doi: 10.1002/(sici)1099-0496(200006)29:6<434::aid-ppul4>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  28. Warner J. O., Naspitz C. K. Third International Pediatric Consensus statement on the management of childhood asthma. International Pediatric Asthma Consensus Group. Pediatr Pulmonol. 1998 Jan;25(1):1–17. doi: 10.1002/(sici)1099-0496(199801)25:1<1::aid-ppul1>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  29. Zweig M. H., Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993 Apr;39(4):561–577. [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES