Abstract
Methods: Intrapulmonary artery (PA) segments were obtained from White Landrace pigs (25–35 kg) and incubated with LPS, IL-1α, and TNF-α and O2• - release was measured by the superoxide dismutase (SOD) inhibitable reduction of ferricytochrome c. The source of O2• - formation was determined using a number of enzyme inhibitors. The role of NO was explored using NO synthase (NOS) inhibitors and the distribution of NOS isoforms and peroxynitrite (ONOO-, an index of NO–O2• - interactions) assessed by immunocytochemistry.
Results: LPS, IL-1α, and TNF-α promoted the formation of O2• - from PA compared with untreated controls in a time and dose dependent manner, an effect markedly enhanced by removal of the endothelium but completely inhibited by the NADPH oxidase inhibitor diphenylene iodonium chloride (DPI). L-NAME and the eNOS inhibitor N5-(1-iminoethyl)-ornithine (L-NIO) enhanced O2• - formation from PA (with endothelium) in response to IL-1α and TNF-α but had no effect on LPS mediated O2• - formation, whereas L-NAME and the iNOS inhibitor L-N6-(1-iminoethyl)-lysine-HCl (L-NIL) enhanced O2• - formation only in response to LPS.
Conclusions: LPS, IL-1α, and TNF-α promote O2• - formation through an upregulation of NADPH oxidase activity which is augmented by removal of the endothelium, as well as the inhibition of eNOS (in the case of cytokines) and iNOS (in the case of LPS). The concomitant expression of NOS isoforms (and NO formation) with that of NADPH oxidase may therefore constitute a protective system designed to remove O2• - through the formation of ONOO-. If this is so, the integrity of the endothelium may be axiomatic in the progression and severity of ARDS.
Full Text
The Full Text of this article is available as a PDF (302.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arriero Maria M., de La Pinta Juan C., Escribano Marta, Celdrán Angel, Muñoz-Alameda Luis, García-Cañete Joaquin, Jiménez Ana M., Casado Santos, Farré Jerónimo, López-Farré Antonio. Aspirin prevents Escherichia coli lipopolysaccharide- and Staphylococcus aureus-induced downregulation of endothelial nitric oxide synthase expression in guinea pig pericardial tissue. Circ Res. 2002 Apr 5;90(6):719–727. doi: 10.1161/01.res.0000013699.74563.42. [DOI] [PubMed] [Google Scholar]
- Bauer T. T., Montón C., Torres A., Cabello H., Fillela X., Maldonado A., Nicolás J. M., Zavala E. Comparison of systemic cytokine levels in patients with acute respiratory distress syndrome, severe pneumonia, and controls. Thorax. 2000 Jan;55(1):46–52. doi: 10.1136/thorax.55.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhagat K., Hingorani A. D., Palacios M., Charles I. G., Vallance P. Cytokine-induced venodilatation in humans in vivo: eNOS masquerading as iNOS. Cardiovasc Res. 1999 Mar;41(3):754–764. doi: 10.1016/s0008-6363(98)00249-1. [DOI] [PubMed] [Google Scholar]
- Bhagat K., Vallance P. Inflammatory cytokines impair endothelium-dependent dilatation in human veins in vivo. Circulation. 1997 Nov 4;96(9):3042–3047. doi: 10.1161/01.cir.96.9.3042. [DOI] [PubMed] [Google Scholar]
- Chabot F., Mitchell J. A., Gutteridge J. M., Evans T. W. Reactive oxygen species in acute lung injury. Eur Respir J. 1998 Mar;11(3):745–757. [PubMed] [Google Scholar]
- Chan-Yeung Moira, Yu W. C. Outbreak of severe acute respiratory syndrome in Hong Kong Special Administrative Region: case report. BMJ. 2003 Apr 19;326(7394):850–852. doi: 10.1136/bmj.326.7394.850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cochrane C. G., Spragg R., Revak S. D. Pathogenesis of the adult respiratory distress syndrome. Evidence of oxidant activity in bronchoalveolar lavage fluid. J Clin Invest. 1983 Mar;71(3):754–761. doi: 10.1172/JCI110823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Keulenaer G. W., Alexander R. W., Ushio-Fukai M., Ishizaka N., Griendling K. K. Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. Biochem J. 1998 Feb 1;329(Pt 3):653–657. doi: 10.1042/bj3290653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ermert Monika, Ruppert Clemens, Günther Andreas, Duncker Hans-Rainer, Seeger Werner, Ermert Leander. Cell-specific nitric oxide synthase-isoenzyme expression and regulation in response to endotoxin in intact rat lungs. Lab Invest. 2002 Apr;82(4):425–441. doi: 10.1038/labinvest.3780436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griendling K. K., Sorescu D., Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000 Mar 17;86(5):494–501. doi: 10.1161/01.res.86.5.494. [DOI] [PubMed] [Google Scholar]
- Haddad I. Y., Pataki G., Hu P., Galliani C., Beckman J. S., Matalon S. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J Clin Invest. 1994 Dec;94(6):2407–2413. doi: 10.1172/JCI117607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeremy J. Y., Mehta D., Bryan A. J., Lewis D., Angelini G. D. Platelets and saphenous vein graft failure following coronary artery bypass surgery. Platelets. 1997;8(5):295–309. doi: 10.1080/09537109777168. [DOI] [PubMed] [Google Scholar]
- Jeremy J. Y., Nystrom M. L., Barradas M. A., Mikhailidis D. P. Eicosanoids and septicaemia. Prostaglandins Leukot Essent Fatty Acids. 1994 Jun;50(6):287–297. doi: 10.1016/0952-3278(94)90235-6. [DOI] [PubMed] [Google Scholar]
- Jeremy J. Y., Rowe D., Emsley A. M., Newby A. C. Nitric oxide and the proliferation of vascular smooth muscle cells. Cardiovasc Res. 1999 Aug 15;43(3):580–594. doi: 10.1016/s0008-6363(99)00171-6. [DOI] [PubMed] [Google Scholar]
- Klinger James R. Inhaled nitric oxide in ARDS. Crit Care Clin. 2002 Jan;18(1):45-68, vi. doi: 10.1016/s0749-0704(03)00064-2. [DOI] [PubMed] [Google Scholar]
- Kobayashi A., Hashimoto S., Kooguchi K., Kitamura Y., Onodera H., Urata Y., Ashihara T. Expression of inducible nitric oxide synthase and inflammatory cytokines in alveolar macrophages of ARDS following sepsis. Chest. 1998 Jun;113(6):1632–1639. doi: 10.1378/chest.113.6.1632. [DOI] [PubMed] [Google Scholar]
- Koch T. Antioxidant status in patients with acute respiratory distress syndrome. Intensive Care Med. 1999 Feb;25(2):134–136. doi: 10.1007/s001340050804. [DOI] [PubMed] [Google Scholar]
- Kooy N. W., Royall J. A., Ye Y. Z., Kelly D. R., Beckman J. S. Evidence for in vivo peroxynitrite production in human acute lung injury. Am J Respir Crit Care Med. 1995 Apr;151(4):1250–1254. doi: 10.1164/ajrccm/151.4.1250. [DOI] [PubMed] [Google Scholar]
- Lamb N. J., Gutteridge J. M., Baker C., Evans T. W., Quinlan G. J. Oxidative damage to proteins of bronchoalveolar lavage fluid in patients with acute respiratory distress syndrome: evidence for neutrophil-mediated hydroxylation, nitration, and chlorination. Crit Care Med. 1999 Sep;27(9):1738–1744. doi: 10.1097/00003246-199909000-00007. [DOI] [PubMed] [Google Scholar]
- Maytin M., Leopold J., Loscalzo J. Oxidant stress in the vasculature. Curr Atheroscler Rep. 1999 Sep;1(2):156–164. doi: 10.1007/s11883-999-0012-z. [DOI] [PubMed] [Google Scholar]
- O'Connor M., Salzman A. L., Szabó C. Role of peroxynitrite in the protein oxidation and apoptotic DNA fragmentation in vascular smooth muscle cells stimulated with bacterial lipopolysaccharide and interferon-gamma. Shock. 1997 Dec;8(6):439–443. [PubMed] [Google Scholar]
- Peiris J. S. M., Lai S. T., Poon L. L. M., Guan Y., Yam L. Y. C., Lim W., Nicholls J., Yee W. K. S., Yan W. W., Cheung M. T. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003 Apr 19;361(9366):1319–1325. doi: 10.1016/S0140-6736(03)13077-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Privat C., Stepien O., David-Dufilho M., Brunet A., Bedioui F., Marche P., Devynck J., Devynck M. A. Superoxide release from interleukin-1B-stimulated human vascular cells: in situ electrochemical measurement. Free Radic Biol Med. 1999 Sep;27(5-6):554–559. doi: 10.1016/s0891-5849(99)00097-0. [DOI] [PubMed] [Google Scholar]
- Salerno L., Sorrenti V., Di Giacomo C., Romeo G., Siracusa M. A. Progress in the development of selective nitric oxide synthase (NOS) inhibitors. Curr Pharm Des. 2002;8(3):177–200. doi: 10.2174/1381612023396375. [DOI] [PubMed] [Google Scholar]
- Stuart-Smith K., Jeremy J. Y. Microvessel damage in acute respiratory distress syndrome: the answer may not be NO. Br J Anaesth. 2001 Aug;87(2):272–279. doi: 10.1093/bja/87.2.272. [DOI] [PubMed] [Google Scholar]
- Weinacker A. B., Vaszar L. T. Acute respiratory distress syndrome: physiology and new management strategies. Annu Rev Med. 2001;52:221–237. doi: 10.1146/annurev.med.52.1.221. [DOI] [PubMed] [Google Scholar]
- Yin K., Hock C. E., Tahamont M., Wong P. Y. Time-dependent cardiovascular and inflammatory changes in acute endotoxemia. Shock. 1998 Jun;9(6):434–442. doi: 10.1097/00024382-199806000-00008. [DOI] [PubMed] [Google Scholar]
- Zouki C., Zhang S. L., Chan J. S., Filep J. G. Peroxynitrite induces integrin-dependent adhesion of human neutrophils to endothelial cells via activation of the Raf-1/MEK/Erk pathway. FASEB J. 2000 Nov 9;15(1):25–27. doi: 10.1096/fj.00-0521fje. [DOI] [PubMed] [Google Scholar]