Skip to main content
Thorax logoLink to Thorax
. 2004 Oct;59(10):870–875. doi: 10.1136/thx.2004.021840

Soluble CD86 protein in serum samples of patients with asthma

H Shi 1, Z Xie 1, J Deng 1, Y Chen 1, C Xiao 1
PMCID: PMC1746836  PMID: 15454653

Abstract

Background: Previous studies have reported that soluble (s) CD86 is involved in the initiation of the immune response. A study was undertaken to investigate the concentrations of sCD86 in serum samples from patients with bronchial asthma and to determine the cell origin of sCD86.

Methods: Serum sCD86 concentrations were measured in 52 asthmatic subjects and 25 non-atopic normal volunteers using an enzyme linked immunosorbent assay, and the relationship of serum sCD86 concentrations to asthma severity and to total and differential white cell counts was analysed. Each type of white blood cell was purified and cultured in vitro to determine the cell origin of serum sCD86.

Results: Serum samples from patients with an acute asthma exacerbation had much higher levels of sCD86 (585.4 (20.5) IU/ml) than those from stable asthmatics (479.6 (15.7) IU/ml, p<0.001) and healthy individuals (435.1 (13.8) IU/ml, p<0.001), and there was no difference between the latter two groups (p = 0.079). In asthmatic subjects the serum sCD86 level was inversely correlated with airway responsiveness, forced expiratory volume in 1 second, and with arterial carbon dioxide tension. In addition, the serum sCD86 level was positively correlated with numbers of lymphocytes, eosinophils, monocytes, but not neutrophils. The in vitro experiments indicated that sCD86 was produced by monocytes.

Conclusions: The serum sCD86 protein level was significantly increased in asthmatic subjects during an exacerbation and correlated with the severity of asthma. sCD86 is most probably derived from monocytes in the peripheral blood.

Full Text

The Full Text of this article is available as a PDF (160.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buelens C., Willems F., Delvaux A., Piérard G., Delville J. P., Velu T., Goldman M. Interleukin-10 differentially regulates B7-1 (CD80) and B7-2 (CD86) expression on human peripheral blood dendritic cells. Eur J Immunol. 1995 Sep;25(9):2668–2672. doi: 10.1002/eji.1830250940. [DOI] [PubMed] [Google Scholar]
  2. Burr J. S., Kimzey S. L., Randolph D. R., Green J. M. CD28 and CTLA4 coordinately regulate airway inflammatory cell recruitment and T-helper cell differentiation after inhaled allergen. Am J Respir Cell Mol Biol. 2001 May;24(5):563–568. doi: 10.1165/ajrcmb.24.5.4375. [DOI] [PubMed] [Google Scholar]
  3. Celestin J., Rotschke O., Falk K., Ramesh N., Jabara H., Strominger J., Geha R. S. IL-3 induces B7.2 (CD86) expression and costimulatory activity in human eosinophils. J Immunol. 2001 Dec 1;167(11):6097–6104. doi: 10.4049/jimmunol.167.11.6097. [DOI] [PubMed] [Google Scholar]
  4. Chambers C. A., Allison J. P. Co-stimulation in T cell responses. Curr Opin Immunol. 1997 Jun;9(3):396–404. doi: 10.1016/s0952-7915(97)80087-8. [DOI] [PubMed] [Google Scholar]
  5. Elliott S. R., Macardle P. J., Roberton D. M., Zola H. Expression of the costimulator molecules, CD80, CD86, CD28, and CD152 on lymphocytes from neonates and young children. Hum Immunol. 1999 Nov;60(11):1039–1048. doi: 10.1016/s0198-8859(99)00090-7. [DOI] [PubMed] [Google Scholar]
  6. Fló J., Tisminetzky S., Baralle F. Codelivery of DNA coding for the soluble form of CD86 results in the down-regulation of the immune response to DNA vaccines. Cell Immunol. 2001 May 1;209(2):120–131. doi: 10.1006/cimm.2001.1784. [DOI] [PubMed] [Google Scholar]
  7. Freeman G. J., Gribben J. G., Boussiotis V. A., Ng J. W., Restivo V. A., Jr, Lombard L. A., Gray G. S., Nadler L. M. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science. 1993 Nov 5;262(5135):909–911. doi: 10.1126/science.7694363. [DOI] [PubMed] [Google Scholar]
  8. Greenfield E. A., Nguyen K. A., Kuchroo V. K. CD28/B7 costimulation: a review. Crit Rev Immunol. 1998;18(5):389–418. doi: 10.1615/critrevimmunol.v18.i5.10. [DOI] [PubMed] [Google Scholar]
  9. Haczku A., Takeda K., Redai I., Hamelmann E., Cieslewicz G., Joetham A., Loader J., Lee J. J., Irvin C., Gelfand E. W. Anti-CD86 (B7.2) treatment abolishes allergic airway hyperresponsiveness in mice. Am J Respir Crit Care Med. 1999 May;159(5 Pt 1):1638–1643. doi: 10.1164/ajrccm.159.5.9711040. [DOI] [PubMed] [Google Scholar]
  10. Hargreave F. E., Ryan G., Thomson N. C., O'Byrne P. M., Latimer K., Juniper E. F., Dolovich J. Bronchial responsiveness to histamine or methacholine in asthma: measurement and clinical significance. J Allergy Clin Immunol. 1981 Nov;68(5):347–355. doi: 10.1016/0091-6749(81)90132-9. [DOI] [PubMed] [Google Scholar]
  11. Hock B. D., Patton W. N., Budhia S., Mannari D., Roberts P., McKenzie J. L. Human plasma contains a soluble form of CD86 which is present at elevated levels in some leukaemia patients. Leukemia. 2002 May;16(5):865–873. doi: 10.1038/sj.leu.2402466. [DOI] [PubMed] [Google Scholar]
  12. Hofer M. F., Jirapongsananuruk O., Trumble A. E., Leung D. Y. Upregulation of B7.2, but not B7.1, on B cells from patients with allergic asthma. J Allergy Clin Immunol. 1998 Jan;101(1 Pt 1):96–102. doi: 10.1016/S0091-6749(98)70199-X. [DOI] [PubMed] [Google Scholar]
  13. Houghton Catherine M., Woodcock Ashley A., Singh Dave. A comparison of lung function methods for assessing dose-response effects of salbutamol. Br J Clin Pharmacol. 2004 Aug;58(2):134–141. doi: 10.1111/j.1365-2125.2004.02105.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ikemizu S., Gilbert R. J., Fennelly J. A., Collins A. V., Harlos K., Jones E. Y., Stuart D. I., Davis S. J. Structure and dimerization of a soluble form of B7-1. Immunity. 2000 Jan;12(1):51–60. doi: 10.1016/s1074-7613(00)80158-2. [DOI] [PubMed] [Google Scholar]
  15. Iking-Konert C., Vogt S., Radsak M., Wagner C., Hänsch G. M., Andrassy K. Polymorphonuclear neutrophils in Wegener's granulomatosis acquire characteristics of antigen presenting cells. Kidney Int. 2001 Dec;60(6):2247–2262. doi: 10.1046/j.1523-1755.2001.00068.x. [DOI] [PubMed] [Google Scholar]
  16. Jeannin P., Magistrelli G., Aubry J. P., Caron G., Gauchat J. F., Renno T., Herbault N., Goetsch L., Blaecke A., Dietrich P. Y. Soluble CD86 is a costimulatory molecule for human T lymphocytes. Immunity. 2000 Sep;13(3):303–312. doi: 10.1016/s1074-7613(00)00030-3. [DOI] [PubMed] [Google Scholar]
  17. Keane-Myers A. M., Gause W. C., Finkelman F. D., Xhou X. D., Wills-Karp M. Development of murine allergic asthma is dependent upon B7-2 costimulation. J Immunol. 1998 Jan 15;160(2):1036–1043. [PubMed] [Google Scholar]
  18. Krinzman S. J., De Sanctis G. T., Cernadas M., Mark D., Wang Y., Listman J., Kobzik L., Donovan C., Nassr K., Katona I. Inhibition of T cell costimulation abrogates airway hyperresponsiveness in a murine model. J Clin Invest. 1996 Dec 15;98(12):2693–2699. doi: 10.1172/JCI119093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuchroo V. K., Das M. P., Brown J. A., Ranger A. M., Zamvil S. S., Sobel R. A., Weiner H. L., Nabavi N., Glimcher L. H. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell. 1995 Mar 10;80(5):707–718. doi: 10.1016/0092-8674(95)90349-6. [DOI] [PubMed] [Google Scholar]
  20. Lenschow D. J., Walunas T. L., Bluestone J. A. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–258. doi: 10.1146/annurev.immunol.14.1.233. [DOI] [PubMed] [Google Scholar]
  21. Linsley P. S., Clark E. A., Ledbetter J. A. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5031–5035. doi: 10.1073/pnas.87.13.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matulonis U., Dosiou C., Freeman G., Lamont C., Mauch P., Nadler L. M., Griffin J. D. B7-1 is superior to B7-2 costimulation in the induction and maintenance of T cell-mediated antileukemia immunity. Further evidence that B7-1 and B7-2 are functionally distinct. J Immunol. 1996 Feb 1;156(3):1126–1131. [PubMed] [Google Scholar]
  23. Mazzarella G., Bianco A., Catena E., De Palma R., Abbate G. F. Th1/Th2 lymphocyte polarization in asthma. Allergy. 2000;55 (Suppl 61):6–9. doi: 10.1034/j.1398-9995.2000.00511.x. [DOI] [PubMed] [Google Scholar]
  24. Oaks M. K., Hallett K. M., Penwell R. T., Stauber E. C., Warren S. J., Tector A. J. A native soluble form of CTLA-4. Cell Immunol. 2000 May 1;201(2):144–153. doi: 10.1006/cimm.2000.1649. [DOI] [PubMed] [Google Scholar]
  25. Rennert P., Furlong K., Jellis C., Greenfield E., Freeman G. J., Ueda Y., Levine B., June C. H., Gray G. S. The IgV domain of human B7-2 (CD86) is sufficient to co-stimulate T lymphocytes and induce cytokine secretion. Int Immunol. 1997 Jun;9(6):805–813. doi: 10.1093/intimm/9.6.805. [DOI] [PubMed] [Google Scholar]
  26. Schweitzer A. N., Sharpe A. H. The complexity of the B7-CD28/CTLA-4 costimulatory pathway. Agents Actions Suppl. 1998;49:33–43. doi: 10.1007/978-3-0348-8857-8_6. [DOI] [PubMed] [Google Scholar]
  27. Shi H. Z., Humbles A., Gerard C., Jin Z., Weller P. F. Lymph node trafficking and antigen presentation by endobronchial eosinophils. J Clin Invest. 2000 Apr;105(7):945–953. doi: 10.1172/JCI8945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tsuyuki S., Tsuyuki J., Einsle K., Kopf M., Coyle A. J. Costimulation through B7-2 (CD86) is required for the induction of a lung mucosal T helper cell 2 (TH2) immune response and altered airway responsiveness. J Exp Med. 1997 May 5;185(9):1671–1679. doi: 10.1084/jem.185.9.1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. van der Merwe P. A., Bodian D. L., Daenke S., Linsley P., Davis S. J. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med. 1997 Feb 3;185(3):393–403. doi: 10.1084/jem.185.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES