Skip to main content
Thorax logoLink to Thorax
. 2004 Nov;59(11):971–976. doi: 10.1136/thx.2003.020933

Nasal airway ion transport is linked to the cystic fibrosis phenotype in adult patients

I Fajac 1, D Hubert 1, D Guillemot 1, I Honore 1, T Bienvenu 1, F Volter 1, J Dall'Ava-Santucci 1, D Dusser 1
PMCID: PMC1746881  PMID: 15516474

Abstract

Background: This study was conducted to determine whether the major nasal airway ion transport abnormalities in cystic fibrosis (that is, defective cAMP regulated chloride secretion and basal sodium hyperabsorption) are related to the clinical expression of cystic fibrosis and/or to the genotype.

Methods: Nasal potential difference was measured in 79 adult patients with cystic fibrosis for whom clinical status, respiratory function, and CFTR genotype were determined.

Results: In univariate and multivariate analysis, patients with pancreatic insufficiency were more likely to have low responses to low chloride (odds ratio (OR) 8.6 (95% CI 1.3 to 58.5), p = 0.03) and isoproterenol (OR 11.2 (95% CI 1.3 to 93.9), p = 0.03) solutions. Similarly, in univariate and multivariate analysis, patients with poor respiratory function (forced expiratory volume in 1 second <50% of predicted value) were more likely to have an enhanced response to amiloride solution (OR 3.7 (95% CI 1.3 to 11.0), p = 0.02). However, there was no significant relationship between nasal potential difference and the severity of the genotype.

Conclusions: Nasal epithelial ion transport in cystic fibrosis is linked to the clinical expression of the disease. The pancreatic status appears to be mostly related to the defect in epithelial chloride secretion whereas the respiratory status is mostly related to abnormal sodium transport and the regulatory function of the CFTR protein.

Full Text

The Full Text of this article is available as a PDF (141.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alton E. W., Currie D., Logan-Sinclair R., Warner J. O., Hodson M. E., Geddes D. M. Nasal potential difference: a clinical diagnostic test for cystic fibrosis. Eur Respir J. 1990 Sep;3(8):922–926. [PubMed] [Google Scholar]
  2. Anderson M. P., Gregory R. J., Thompson S., Souza D. W., Paul S., Mulligan R. C., Smith A. E., Welsh M. J. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science. 1991 Jul 12;253(5016):202–205. doi: 10.1126/science.1712984. [DOI] [PubMed] [Google Scholar]
  3. Bear C. E., Li C. H., Kartner N., Bridges R. J., Jensen T. J., Ramjeesingh M., Riordan J. R. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell. 1992 Feb 21;68(4):809–818. doi: 10.1016/0092-8674(92)90155-6. [DOI] [PubMed] [Google Scholar]
  4. Bornstein J. D., Cohn J. A. Cystic fibrosis in the pancreas: recent advances provide new insights. Curr Gastroenterol Rep. 1999 Apr;1(2):161–165. doi: 10.1007/s11894-996-0016-6. [DOI] [PubMed] [Google Scholar]
  5. Boucher R. C. Human airway ion transport. Part one. Am J Respir Crit Care Med. 1994 Jul;150(1):271–281. doi: 10.1164/ajrccm.150.1.8025763. [DOI] [PubMed] [Google Scholar]
  6. Boucher R. C. Molecular insights into the physiology of the 'thin film' of airway surface liquid. J Physiol. 1999 May 1;516(Pt 3):631–638. doi: 10.1111/j.1469-7793.1999.0631u.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boucher R. C., Stutts M. J., Knowles M. R., Cantley L., Gatzy J. T. Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest. 1986 Nov;78(5):1245–1252. doi: 10.1172/JCI112708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bronsveld I., Mekus F., Bijman J., Ballmann M., de Jonge H. R., Laabs U., Halley D. J., Ellemunter H., Mastella G., Thomas S. Chloride conductance and genetic background modulate the cystic fibrosis phenotype of Delta F508 homozygous twins and siblings. J Clin Invest. 2001 Dec;108(11):1705–1715. doi: 10.1172/JCI12108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Egan M., Flotte T., Afione S., Solow R., Zeitlin P. L., Carter B. J., Guggino W. B. Defective regulation of outwardly rectifying Cl- channels by protein kinase A corrected by insertion of CFTR. Nature. 1992 Aug 13;358(6387):581–584. doi: 10.1038/358581a0. [DOI] [PubMed] [Google Scholar]
  10. Fajac I., Hubert D., Bienvenu T., Richaud-Thiriez B., Matran R., Kaplan J. C., Dall'Ava-Santucci J., Dusser D. J. Relationships between nasal potential difference and respiratory function in adults with cystic fibrosis. Eur Respir J. 1998 Dec;12(6):1295–1300. doi: 10.1183/09031936.98.12061295. [DOI] [PubMed] [Google Scholar]
  11. Fanen P., Ghanem N., Vidaud M., Besmond C., Martin J., Costes B., Plassa F., Goossens M. Molecular characterization of cystic fibrosis: 16 novel mutations identified by analysis of the whole cystic fibrosis conductance transmembrane regulator (CFTR) coding regions and splice site junctions. Genomics. 1992 Jul;13(3):770–776. doi: 10.1016/0888-7543(92)90152-i. [DOI] [PubMed] [Google Scholar]
  12. Gabriel S. E., Clarke L. L., Boucher R. C., Stutts M. J. CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature. 1993 May 20;363(6426):263–268. doi: 10.1038/363263a0. [DOI] [PubMed] [Google Scholar]
  13. Ho L. P., Samways J. M., Porteous D. J., Dorin J. R., Carothers A., Greening A. P., Innes J. A. Correlation between nasal potential difference measurements, genotype and clinical condition in patients with cystic fibrosis. Eur Respir J. 1997 Sep;10(9):2018–2022. doi: 10.1183/09031936.97.10092018. [DOI] [PubMed] [Google Scholar]
  14. Kerem E., Reisman J., Corey M., Canny G. J., Levison H. Prediction of mortality in patients with cystic fibrosis. N Engl J Med. 1992 Apr 30;326(18):1187–1191. doi: 10.1056/NEJM199204303261804. [DOI] [PubMed] [Google Scholar]
  15. Knowles M. R., Carson J. L., Collier A. M., Gatzy J. T., Boucher R. C. Measurements of nasal transepithelial electric potential differences in normal human subjects in vivo. Am Rev Respir Dis. 1981 Oct;124(4):484–490. doi: 10.1164/arrd.1981.124.4.484. [DOI] [PubMed] [Google Scholar]
  16. Knowles M. R., Paradiso A. M., Boucher R. C. In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis. Hum Gene Ther. 1995 Apr;6(4):445–455. doi: 10.1089/hum.1995.6.4-445. [DOI] [PubMed] [Google Scholar]
  17. Knowles M., Gatzy J., Boucher R. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med. 1981 Dec 17;305(25):1489–1495. doi: 10.1056/NEJM198112173052502. [DOI] [PubMed] [Google Scholar]
  18. Mall Marcus, Grubb Barbara R., Harkema Jack R., O'Neal Wanda K., Boucher Richard C. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med. 2004 Apr 11;10(5):487–493. doi: 10.1038/nm1028. [DOI] [PubMed] [Google Scholar]
  19. Middleton P. G., Geddes D. M., Alton E. W. Protocols for in vivo measurement of the ion transport defects in cystic fibrosis nasal epithelium. Eur Respir J. 1994 Nov;7(11):2050–2056. [PubMed] [Google Scholar]
  20. Rowntree Rebecca K., Harris Ann. The phenotypic consequences of CFTR mutations. Ann Hum Genet. 2003 Sep;67(Pt 5):471–485. doi: 10.1046/j.1469-1809.2003.00028.x. [DOI] [PubMed] [Google Scholar]
  21. Salvatore Francesco, Scudiero Olga, Castaldo Giuseppe. Genotype-phenotype correlation in cystic fibrosis: the role of modifier genes. Am J Med Genet. 2002 Jul 22;111(1):88–95. doi: 10.1002/ajmg.10461. [DOI] [PubMed] [Google Scholar]
  22. Schwiebert E. M., Flotte T., Cutting G. R., Guggino W. B. Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents. Am J Physiol. 1994 May;266(5 Pt 1):C1464–C1477. doi: 10.1152/ajpcell.1994.266.5.C1464. [DOI] [PubMed] [Google Scholar]
  23. Stutts M. J., Canessa C. M., Olsen J. C., Hamrick M., Cohn J. A., Rossier B. C., Boucher R. C. CFTR as a cAMP-dependent regulator of sodium channels. Science. 1995 Aug 11;269(5225):847–850. doi: 10.1126/science.7543698. [DOI] [PubMed] [Google Scholar]
  24. Taussig L. M., Kattwinkel J., Friedewald W. T., Di Sant'Agnese P. A. A new prognostic score and clinical evaluation system for cystic fibrosis. J Pediatr. 1973 Mar;82(3):380–390. doi: 10.1016/s0022-3476(73)80110-6. [DOI] [PubMed] [Google Scholar]
  25. Thomas S. R., Jaffe A., Geddes D. M., Hodson M. E., Alton E. W. Pulmonary disease severity in men with deltaF508 cystic fibrosis and residual chloride secretion. Lancet. 1999 Mar 20;353(9157):984–985. doi: 10.1016/S0140-6736(98)05447-6. [DOI] [PubMed] [Google Scholar]
  26. Wallace Helen L., Barker Pierre M., Southern Kevin W. Nasal airway ion transport and lung function in young people with cystic fibrosis. Am J Respir Crit Care Med. 2003 Jun 26;168(5):594–600. doi: 10.1164/rccm.200211-1302OC. [DOI] [PubMed] [Google Scholar]
  27. Welsh M. J., Smith A. E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993 Jul 2;73(7):1251–1254. doi: 10.1016/0092-8674(93)90353-r. [DOI] [PubMed] [Google Scholar]
  28. Zielenski J., Tsui L. C. Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet. 1995;29:777–807. doi: 10.1146/annurev.ge.29.120195.004021. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES