Abstract
Methods: Breath samples were collected weekly between September and December 2000 in a community based group of elderly subjects (median age 70.7 years) in Steubenville, Ohio. The samples were analysed for NO. Air pollution levels were measured concurrently at a central site monitor.
Results: An increase in the 24 hour average PM2.5 concentration of 17.7 µg/m3 was associated with an increase in FENO of 1.45 ppb (95% CI 0.33 to 2.57) in models adjusted for subject, week of study, day of the week, hour of the day, ambient barometric pressure, temperature, and relative humidity. This represents a change of approximately 15% compared with the mean FENO in the cohort (9.9 ppb). A significant association was also observed for a 24 hour moving average of ambient NO (0.83 ppb increase, 95% CI 0.26 to 1.40). In two-pollutant models, the magnitude and precision of the PM2.5 effect was not reduced and the ambient NO effect was no longer significant. The associations between FENO and PM2.5 were significantly higher in subjects with a doctor's diagnosis of COPD (p value for interaction = 0.03).
Conclusions: Ambient pollution may lead to airway inflammation as measured by FENO. These subclinical inflammatory changes may be an important step in the pathogenesis of the cardiopulmonary effects induced by exposure to air pollution.
Full Text
The Full Text of this article is available as a PDF (264.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balint B., Donnelly L. E., Hanazawa T., Kharitonov S. A., Barnes P. J. Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke. Thorax. 2001 Jun;56(6):456–461. doi: 10.1136/thorax.56.6.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baraldi E., Azzolin N. M., Zanconato S., Dario C., Zacchello F. Corticosteroids decrease exhaled nitric oxide in children with acute asthma. J Pediatr. 1997 Sep;131(3):381–385. doi: 10.1016/s0022-3476(97)80062-5. [DOI] [PubMed] [Google Scholar]
- Barnes P. J., Liew F. Y. Nitric oxide and asthmatic inflammation. Immunol Today. 1995 Mar;16(3):128–130. doi: 10.1016/0167-5699(95)80128-6. [DOI] [PubMed] [Google Scholar]
- Bayram H., Devalia J. L., Sapsford R. J., Ohtoshi T., Miyabara Y., Sagai M., Davies R. J. The effect of diesel exhaust particles on cell function and release of inflammatory mediators from human bronchial epithelial cells in vitro. Am J Respir Cell Mol Biol. 1998 Mar;18(3):441–448. doi: 10.1165/ajrcmb.18.3.2882. [DOI] [PubMed] [Google Scholar]
- Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001 Oct;2(10):907–916. doi: 10.1038/ni1001-907. [DOI] [PubMed] [Google Scholar]
- Brook Robert D., Brook Jeffrey R., Urch Bruce, Vincent Renaud, Rajagopalan Sanjay, Silverman Frances. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation. 2002 Apr 2;105(13):1534–1536. doi: 10.1161/01.cir.0000013838.94747.64. [DOI] [PubMed] [Google Scholar]
- Chambers D. C., Tunnicliffe W. S., Ayres J. G. Acute inhalation of cigarette smoke increases lower respiratory tract nitric oxide concentrations. Thorax. 1998 Aug;53(8):677–679. doi: 10.1136/thx.53.8.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chatkin J. M., Ansarin K., Silkoff P. E., McClean P., Gutierrez C., Zamel N., Chapman K. R. Exhaled nitric oxide as a noninvasive assessment of chronic cough. Am J Respir Crit Care Med. 1999 Jun;159(6):1810–1813. doi: 10.1164/ajrccm.159.6.9809047. [DOI] [PubMed] [Google Scholar]
- Clini E., Bianchi L., Ambrosino N. Exhaled nitric oxide in COPD patients. Monaldi Arch Chest Dis. 2001 Apr;56(2):169–170. [PubMed] [Google Scholar]
- Corrigan C. J., Kay A. B. The roles of inflammatory cells in the pathogenesis of asthma and of chronic obstructive pulmonary disease. Am Rev Respir Dis. 1991 May;143(5 Pt 1):1165–1176. doi: 10.1164/ajrccm/143.5_Pt_1.1165. [DOI] [PubMed] [Google Scholar]
- De Groote M. A., Fang F. C. NO inhibitions: antimicrobial properties of nitric oxide. Clin Infect Dis. 1995 Oct;21 (Suppl 2):S162–S165. doi: 10.1093/clinids/21.supplement_2.s162. [DOI] [PubMed] [Google Scholar]
- Dockery D. W. Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect. 2001 Aug;109 (Suppl 4):483–486. doi: 10.1289/ehp.01109s4483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabay C., Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999 Feb 11;340(6):448–454. doi: 10.1056/NEJM199902113400607. [DOI] [PubMed] [Google Scholar]
- Gaston B., Drazen J. M., Loscalzo J., Stamler J. S. The biology of nitrogen oxides in the airways. Am J Respir Crit Care Med. 1994 Feb;149(2 Pt 1):538–551. doi: 10.1164/ajrccm.149.2.7508323. [DOI] [PubMed] [Google Scholar]
- Gilmour M. I., Park P., Selgrade M. J. Increased immune and inflammatory responses to dust mite antigen in rats exposed to 5 ppm NO2. Fundam Appl Toxicol. 1996 May;31(1):65–70. doi: 10.1006/faat.1996.0076. [DOI] [PubMed] [Google Scholar]
- Gold D. R., Litonjua A., Schwartz J., Lovett E., Larson A., Nearing B., Allen G., Verrier M., Cherry R., Verrier R. Ambient pollution and heart rate variability. Circulation. 2000 Mar 21;101(11):1267–1273. doi: 10.1161/01.cir.101.11.1267. [DOI] [PubMed] [Google Scholar]
- Gwynn R. C., Burnett R. T., Thurston G. D. A time-series analysis of acidic particulate matter and daily mortality and morbidity in the Buffalo, New York, region. Environ Health Perspect. 2000 Feb;108(2):125–133. doi: 10.1289/ehp.00108125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hegewald M. J., Crapo R. O., Jensen R. L. Intraindividual peak flow variability. Chest. 1995 Jan;107(1):156–161. doi: 10.1378/chest.107.1.156. [DOI] [PubMed] [Google Scholar]
- Hunt J. F., Fang K., Malik R., Snyder A., Malhotra N., Platts-Mills T. A., Gaston B. Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med. 2000 Mar;161(3 Pt 1):694–699. doi: 10.1164/ajrccm.161.3.9911005. [DOI] [PubMed] [Google Scholar]
- Laden F., Neas L. M., Dockery D. W., Schwartz J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect. 2000 Oct;108(10):941–947. doi: 10.1289/ehp.00108941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis S. A., Weiss S. T., Britton J. R. Airway responsiveness and peak flow variability in the diagnosis of asthma for epidemiological studies. Eur Respir J. 2001 Dec;18(6):921–927. doi: 10.1183/09031936.01.00211801. [DOI] [PubMed] [Google Scholar]
- Li X. Y., Gilmour P. S., Donaldson K., MacNee W. Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax. 1996 Dec;51(12):1216–1222. doi: 10.1136/thx.51.12.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin L. D., Krunkosky T. M., Dye J. A., Fischer B. M., Jiang N. F., Rochelle L. G., Akley N. J., Dreher K. L., Adler K. B. The role of reactive oxygen and nitrogen species in the response of airway epithelium to particulates. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1301–1307. doi: 10.1289/ehp.97105s51301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massaro A. F., Gaston B., Kita D., Fanta C., Stamler J. S., Drazen J. M. Expired nitric oxide levels during treatment of acute asthma. Am J Respir Crit Care Med. 1995 Aug;152(2):800–803. doi: 10.1164/ajrccm.152.2.7633745. [DOI] [PubMed] [Google Scholar]
- Mattes Joerg, Storm van's Gravesande Karin, Moeller Caroline, Moseler Michael, Brandis Matthias, Kuehr Joachim. Circadian variation of exhaled nitric oxide and urinary eosinophil protein X in asthmatic and healthy children. Pediatr Res. 2002 Feb;51(2):190–194. doi: 10.1203/00006450-200202000-00011. [DOI] [PubMed] [Google Scholar]
- Peters A., Fröhlich M., Döring A., Immervoll T., Wichmann H. E., Hutchinson W. L., Pepys M. B., Koenig W. Particulate air pollution is associated with an acute phase response in men; results from the MONICA-Augsburg Study. Eur Heart J. 2001 Jul;22(14):1198–1204. doi: 10.1053/euhj.2000.2483. [DOI] [PubMed] [Google Scholar]
- Peters A., Liu E., Verrier R. L., Schwartz J., Gold D. R., Mittleman M., Baliff J., Oh J. A., Allen G., Monahan K. Air pollution and incidence of cardiac arrhythmia. Epidemiology. 2000 Jan;11(1):11–17. doi: 10.1097/00001648-200001000-00005. [DOI] [PubMed] [Google Scholar]
- Peters J. M., Avol E., Gauderman W. J., Linn W. S., Navidi W., London S. J., Margolis H., Rappaport E., Vora H., Gong H., Jr A study of twelve Southern California communities with differing levels and types of air pollution. II. Effects on pulmonary function. Am J Respir Crit Care Med. 1999 Mar;159(3):768–775. doi: 10.1164/ajrccm.159.3.9804144. [DOI] [PubMed] [Google Scholar]
- Pope C. A., 3rd, Verrier R. L., Lovett E. G., Larson A. C., Raizenne M. E., Kanner R. E., Schwartz J., Villegas G. M., Gold D. R., Dockery D. W. Heart rate variability associated with particulate air pollution. Am Heart J. 1999 Nov;138(5 Pt 1):890–899. doi: 10.1016/s0002-8703(99)70014-1. [DOI] [PubMed] [Google Scholar]
- Recommendations for standardized procedures for the on-line and off-line measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 1999 Dec;160(6):2104–2117. doi: 10.1164/ajrccm.160.6.ats8-99. [DOI] [PubMed] [Google Scholar]
- Ridker P. M., Hennekens C. H., Buring J. E., Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000 Mar 23;342(12):836–843. doi: 10.1056/NEJM200003233421202. [DOI] [PubMed] [Google Scholar]
- Saetta M. Airway inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999 Nov;160(5 Pt 2):S17–S20. doi: 10.1164/ajrccm.160.supplement_1.6. [DOI] [PubMed] [Google Scholar]
- Salvi S., Blomberg A., Rudell B., Kelly F., Sandström T., Holgate S. T., Frew A. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med. 1999 Mar;159(3):702–709. doi: 10.1164/ajrccm.159.3.9709083. [DOI] [PubMed] [Google Scholar]
- Schwartz J. Air pollution and blood markers of cardiovascular risk. Environ Health Perspect. 2001 Jun;109 (Suppl 3):405–409. doi: 10.1289/ehp.01109s3405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soriano Joan B., Davis Kourtney J., Coleman Bobbie, Visick George, Mannino David, Pride Neil B. The proportional Venn diagram of obstructive lung disease: two approximations from the United States and the United Kingdom. Chest. 2003 Aug;124(2):474–481. doi: 10.1378/chest.124.2.474. [DOI] [PubMed] [Google Scholar]
- Steerenberg P. A., Nierkens S., Fischer P. H., van Loveren H., Opperhuizen A., Vos J. G., van Amsterdam J. G. Traffic-related air pollution affects peak expiratory flow, exhaled nitric oxide, and inflammatory nasal markers. Arch Environ Health. 2001 Mar-Apr;56(2):167–174. doi: 10.1080/00039890109604069. [DOI] [PubMed] [Google Scholar]
- Therminarias A., Flore P., Favre-Juvin A., Oddou M. F., Delaire M., Grimbert F. Air contamination with nitric oxide: effect on exhaled nitric oxide response. Am J Respir Crit Care Med. 1998 Mar;157(3 Pt 1):791–795. doi: 10.1164/ajrccm.157.3.9706091. [DOI] [PubMed] [Google Scholar]
- Van Amsterdam J. G., Verlaan B. P., Van Loveren H., Elzakker B. G., Vos S. G., Opperhuizen A., Steerenberg P. A. Air pollution is associated with increased level of exhaled nitric oxide in nonsmoking healthy subjects. Arch Environ Health. 1999 Sep-Oct;54(5):331–335. doi: 10.1080/00039899909602496. [DOI] [PubMed] [Google Scholar]
- Zanzinger J. Role of nitric oxide in the neural control of cardiovascular function. Cardiovasc Res. 1999 Aug 15;43(3):639–649. doi: 10.1016/s0008-6363(99)00085-1. [DOI] [PubMed] [Google Scholar]
