Skip to main content
Thorax logoLink to Thorax
. 2004 Mar;59(3):231–236. doi: 10.1136/thx.2003.008037

Neutrophil apoptosis, proinflammatory mediators and cell counts in bronchiectasis

A Watt 1, V Brown 1, J Courtney 1, M Kelly 1, L Garske 1, J Elborn 1, M Ennis 1
PMCID: PMC1746966  PMID: 14985560

Abstract

Methods: Sputum was induced from 15 subjects with idiopathic bronchiectasis at the beginning of an acute exacerbation and after intravenous antibiotic treatment. Neutrophil apoptosis and necrosis were assessed using flow cytometry and morphology and the supernatant was analysed for concentrations of inflammatory mediators.

Results: Neutrophil numbers (x106 cells/g sputum) in sputum were significantly greater on day 0 than on day 14 (median difference (95% confidence interval (CI)) 5.14 (1.27 to 8.46), p = 0.02). Controls had a significantly higher percentage of sputum macrophages than patients with bronchiectasis (day 0, 1.35 (95% CI 0.48 to 2.89), p = 0.004; day 14, 1.09 (95% CI 0.26 to 2.86), p = 0.02). The concentrations of tumour necrosis factor α (pg/ml), interleukin 8 (ng/ml), and neutrophil elastase (ng/ml) in sputum supernatant were significantly reduced on day 14 compared with day 0 (median difference -94 (95% CI -158 to -27), p = 0.005; -106 (95% CI -189 to -50), p = 0.0006; and -73 451 (95% CI -135 495 to -12 303), p = 0.02 respectively). Patients with bronchiectasis had a significantly lower percentage of cells which were neither apoptotic nor necrotic than healthy controls (both days, -38.8 (95% CI -49.6 to -8.5), p = 0.002; -45.0 (95% CI -58.0 to -34.1), p = 0.0003, respectively), and on day 14 they had a significantly higher percentage of secondary necrotic cells than healthy controls (40 (95% CI 11.6 to 57.5), p = 0.004).

Conclusions: This study shows that antibiotic treatment affects concentrations of proinflammatory mediators and cell death and clearance may be altered in bronchiectasis.

Full Text

The Full Text of this article is available as a PDF (324.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aprikyan A. A., Liles W. C., Dale D. C. Emerging role of apoptosis in the pathogenesis of severe neutropenia. Curr Opin Hematol. 2000 May;7(3):131–132. doi: 10.1097/00062752-200005000-00001. [DOI] [PubMed] [Google Scholar]
  2. Biffl W. L., Moore E. E., Moore F. A., Barnett C. C., Jr Interleukin-6 suppression of neutrophil apoptosis is neutrophil concentration dependent. J Leukoc Biol. 1995 Nov;58(5):582–584. doi: 10.1002/jlb.58.5.582. [DOI] [PubMed] [Google Scholar]
  3. Bratton S. B., MacFarlane M., Cain K., Cohen G. M. Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp Cell Res. 2000 Apr 10;256(1):27–33. doi: 10.1006/excr.2000.4835. [DOI] [PubMed] [Google Scholar]
  4. Castillo M. J., Nakajima K., Zimmerman M., Powers J. C. Sensitive substrates for human leukocyte and porcine pancreatic elastase: a study of the merits of various chromophoric and fluorogenic leaving groups in assays for serine proteases. Anal Biochem. 1979 Oct 15;99(1):53–64. doi: 10.1016/0003-2697(79)90043-5. [DOI] [PubMed] [Google Scholar]
  5. Daviskas E., Anderson S. D., Eberl S., Chan H. K., Young I. H. The 24-h effect of mannitol on the clearance of mucus in patients with bronchiectasis. Chest. 2001 Feb;119(2):414–421. doi: 10.1378/chest.119.2.414. [DOI] [PubMed] [Google Scholar]
  6. Droemann D., Aries S. P., Hansen F., Moellers M., Braun J., Katus H. A., Dalhoff K. Decreased apoptosis and increased activation of alveolar neutrophils in bacterial pneumonia. Chest. 2000 Jun;117(6):1679–1684. doi: 10.1378/chest.117.6.1679. [DOI] [PubMed] [Google Scholar]
  7. Dunican A. L., Leuenroth S. J., Grutkoski P., Ayala A., Simms H. H. TNFalpha-induced suppression of PMN apoptosis is mediated through interleukin-8 production. Shock. 2000 Sep;14(3):284–289. doi: 10.1097/00024382-200014030-00007. [DOI] [PubMed] [Google Scholar]
  8. Eller J., Lapa e Silva J. R., Poulter L. W., Lode H., Cole P. J. Cells and cytokines in chronic bronchial infection. Ann N Y Acad Sci. 1994 May 28;725:331–345. doi: 10.1111/j.1749-6632.1994.tb39816.x. [DOI] [PubMed] [Google Scholar]
  9. Fadok V. A., Bratton D. L., Guthrie L., Henson P. M. Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J Immunol. 2001 Jun 1;166(11):6847–6854. doi: 10.4049/jimmunol.166.11.6847. [DOI] [PubMed] [Google Scholar]
  10. Fadok V. A. Clearance: the last and often forgotten stage of apoptosis. J Mammary Gland Biol Neoplasia. 1999 Apr;4(2):203–211. doi: 10.1023/a:1011384009787. [DOI] [PubMed] [Google Scholar]
  11. Fadok V. A., Henson P. M. Apoptosis: getting rid of the bodies. Curr Biol. 1998 Sep 24;8(19):R693–R695. doi: 10.1016/s0960-9822(98)70438-5. [DOI] [PubMed] [Google Scholar]
  12. Haslett C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med. 1999 Nov;160(5 Pt 2):S5–11. doi: 10.1164/ajrccm.160.supplement_1.4. [DOI] [PubMed] [Google Scholar]
  13. Karpati F., Hjelte F. L., Wretlind B. TNF-alpha and IL-8 in consecutive sputum samples from cystic fibrosis patients during antibiotic treatment. Scand J Infect Dis. 2000;32(1):75–79. doi: 10.1080/00365540050164263. [DOI] [PubMed] [Google Scholar]
  14. Kelly Martin G., Brown Vanessa, Martin S. Lorraine, Ennis Madeleine, Elborn J. Stuart. Comparison of sputum induction using high-output and low-output ultrasonic nebulizers in normal subjects and patients with COPD. Chest. 2002 Sep;122(3):955–959. doi: 10.1378/chest.122.3.955. [DOI] [PubMed] [Google Scholar]
  15. Khan T. Z., Wagener J. S., Bost T., Martinez J., Accurso F. J., Riches D. W. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995 Apr;151(4):1075–1082. doi: 10.1164/ajrccm/151.4.1075. [DOI] [PubMed] [Google Scholar]
  16. Konstan M. W., Berger M. Current understanding of the inflammatory process in cystic fibrosis: onset and etiology. Pediatr Pulmonol. 1997 Aug;24(2):137–161. doi: 10.1002/(sici)1099-0496(199708)24:2<137::aid-ppul13>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  17. Lee A., Whyte M. K., Haslett C. Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leukoc Biol. 1993 Oct;54(4):283–288. [PubMed] [Google Scholar]
  18. Matsuda Takeaki, Saito Hideaki, Fukatsu Kazuhiko, Han Ilsoo, Inoue Tomomi, Furukawa Satoshi, Ikeda Shigeo, Hidemura Akio, Kang Woodae. Differences in neutrophil death among beta-lactam antibiotics after in vitro killing of bacteria. Shock. 2002 Jul;18(1):69–74. doi: 10.1097/00024382-200207000-00013. [DOI] [PubMed] [Google Scholar]
  19. Matute-Bello G., Liles W. C., Radella F., 2nd, Steinberg K. P., Ruzinski J. T., Jonas M., Chi E. Y., Hudson L. D., Martin T. R. Neutrophil apoptosis in the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1997 Dec;156(6):1969–1977. doi: 10.1164/ajrccm.156.6.96-12081. [DOI] [PubMed] [Google Scholar]
  20. Pavord I. D., Pizzichini M. M., Pizzichini E., Hargreave F. E. The use of induced sputum to investigate airway inflammation. Thorax. 1997 Jun;52(6):498–501. doi: 10.1136/thx.52.6.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ruiz Lina M., Bedoya Gabriel, Salazar James, García de O Diana, Patiño Pablo J. Dexamethasone inhibits apoptosis of human neutrophils induced by reactive oxygen species. Inflammation. 2002 Oct;26(5):215–222. doi: 10.1023/a:1019714618068. [DOI] [PubMed] [Google Scholar]
  22. Sepper R., Konttinen Y. T., Buø L., Eklund K. K., Lauhio A., Sorsa T., Tschesche H., Aasen A. O., Sillastu H. Potentiative effects of neutral proteinases in an inflamed lung: relationship of neutrophil procollagenase (proMMP-8) to plasmin, cathepsin G and tryptase in bronchiectasis in vivo. Eur Respir J. 1997 Dec;10(12):2788–2793. doi: 10.1183/09031936.97.10122788. [DOI] [PubMed] [Google Scholar]
  23. Sepper R., Konttinen Y. T., Kemppinen P., Sorsa T., Eklund K. K. Mast cells in bronchiectasis. Ann Med. 1998 Jun;30(3):307–315. doi: 10.3109/07853899809005860. [DOI] [PubMed] [Google Scholar]
  24. Shum D. K., Chan S. C., Ip M. S. Neutrophil-mediated degradation of lung proteoglycans: stimulation by tumor necrosis factor-alpha in sputum of patients with bronchiectasis. Am J Respir Crit Care Med. 2000 Nov;162(5):1925–1931. doi: 10.1164/ajrccm.162.5.9907064. [DOI] [PubMed] [Google Scholar]
  25. Takanashi S., Hasegawa Y., Kanehira Y., Yamamoto K., Fujimoto K., Satoh K., Okamura K. Interleukin-10 level in sputum is reduced in bronchial asthma, COPD and in smokers. Eur Respir J. 1999 Aug;14(2):309–314. doi: 10.1034/j.1399-3003.1999.14b12.x. [DOI] [PubMed] [Google Scholar]
  26. Tasker A. D., Flower C. D. Imaging the airways. Hemoptysis, bronchiectasis, and small airways disease. Clin Chest Med. 1999 Dec;20(4):761-73, viii. doi: 10.1016/s0272-5231(05)70254-9. [DOI] [PubMed] [Google Scholar]
  27. Tsang K. W., Chan K., Ho P., Zheng L., Ooi G. C., Ho J. C., Lam W. Sputum elastase in steady-state bronchiectasis. Chest. 2000 Feb;117(2):420–426. doi: 10.1378/chest.117.2.420. [DOI] [PubMed] [Google Scholar]
  28. Tsang K. W., Ho P. L., Lam W. K., Ip M. S., Chan K. N., Ho C. S., Ooi C. C., Yuen K. Y. Inhaled fluticasone reduces sputum inflammatory indices in severe bronchiectasis. Am J Respir Crit Care Med. 1998 Sep;158(3):723–727. doi: 10.1164/ajrccm.158.3.9710090. [DOI] [PubMed] [Google Scholar]
  29. Tsang K. W., Lam W. K., Kwok E., Chan K. N., Hu W. H., Ooi G. C., Zheng L., Wong B. C., Lam S. K. Helicobacter pylori and upper gastrointestinal symptoms in bronchiectasis. Eur Respir J. 1999 Dec;14(6):1345–1350. doi: 10.1183/09031936.99.14613459. [DOI] [PubMed] [Google Scholar]
  30. Tsuchihashi Yoshiko, Oishi Kazunori, Yoshimine Hiroyuki, Suzuki Shoichi, Kumatori Atsushi, Sunazuka Toshiaki, Omura Satoshi, Matsushima Kouji, Nagatake Tsuyoshi. Fourteen-member macrolides suppress interleukin-8 production but do not promote apoptosis of activated neutrophils. Antimicrob Agents Chemother. 2002 Apr;46(4):1101–1104. doi: 10.1128/AAC.46.4.1101-1104.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vandivier R. William, Fadok Valerie A., Hoffmann Peter R., Bratton Donna L., Penvari Churee, Brown Kevin K., Brain Joseph D., Accurso Frank J., Henson Peter M. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest. 2002 Mar;109(5):661–670. doi: 10.1172/JCI13572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Whyte M., Renshaw S., Lawson R., Bingle C. Apoptosis and the regulation of neutrophil lifespan. Biochem Soc Trans. 1999 Dec;27(6):802–807. doi: 10.1042/bst0270802. [DOI] [PubMed] [Google Scholar]
  33. Zhang X., Moilanen E., Kankaanranta H. Beclomethasone, budesonide and fluticasone propionate inhibit human neutrophil apoptosis. Eur J Pharmacol. 2001 Nov 23;431(3):365–371. doi: 10.1016/s0014-2999(01)01437-6. [DOI] [PubMed] [Google Scholar]
  34. Zhang Xianzhi, Moilanen Eeva, Adcock Ian M., Lindsay Mark A., Kankaanranta Hannu. Divergent effect of mometasone on human eosinophil and neutrophil apoptosis. Life Sci. 2002 Aug 16;71(13):1523–1534. doi: 10.1016/s0024-3205(02)01921-5. [DOI] [PubMed] [Google Scholar]
  35. van Belkum A., Renders N. H., Smith S., Overbeek S. E., Verbrugh H. A. Comparison of conventional and molecular methods for the detection of bacterial pathogens in sputum samples from cystic fibrosis patients. FEMS Immunol Med Microbiol. 2000 Jan;27(1):51–57. doi: 10.1111/j.1574-695X.2000.tb01411.x. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

[Web-only Figures]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES