Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1987 Feb;31(2):274–280. doi: 10.1128/aac.31.2.274

Antibacterial activity and mechanism of action of 3'-azido-3'-deoxythymidine (BW A509U).

L P Elwell, R Ferone, G A Freeman, J A Fyfe, J A Hill, P H Ray, C A Richards, S C Singer, V B Knick, J L Rideout, et al.
PMCID: PMC174705  PMID: 3551832

Abstract

The thymidine analog 3'-azido-3'-deoxythymidine (BW A509U; azidothymidine [AZT]) had potent bactericidal activity against many members of the family Enterobacteriaceae, including strains of Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, Shigella flexneri, and Enterobacter aerogenes. AZT also had bactericidal activity against Vibrio cholerae and the fish pathogen Vibrio anguillarum. AZT had no activity against Pseudomonas aeruginosa, gram-positive bacteria, anaerobic bacteria, Mycobacterium tuberculosis, nontuberculosis mycobacteria, or most fungal pathogens. Several lines of evidence indicated that AZT must be activated to the nucleotide level to inhibit cellular metabolism: AZT was a substrate for E. coli thymidine kinase; spontaneously arising AZT-resistant mutants of E. coli ML-30 and S. typhimurium were deficient in thymidine kinase; and intact E. coli ML-30 cells converted [3H]AZT to its mono-, di-, and triphosphate metabolites. Of the phosphorylated metabolites, AZT-5'-triphosphate was the most potent inhibitor of replicative DNA synthesis in toluene-permeabilized E. coli pol A mutant cells. AZT-treated E. coli cultures grown in minimal medium contained highly elongated cells consistent with the inhibition of DNA synthesis. AZT-triphosphate was a specific DNA chain terminator in the in vitro DNA polymerization reaction catalyzed by the Klenow fragment of E. coli DNA polymerase I. Thus, DNA chain termination may explain the lethal properties of this compound against susceptible microorganisms.

Full text

PDF
274

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. R., Deutscher M. P., Kornberg A., Russell A. F., Moffatt J. G. Enzymatic synthesis of deoxyribonucleic acid. XXXIV. Termination of chain growth by a 2',3'-dideoxyribonucleotide. Biochemistry. 1969 Dec;8(12):4897–4904. doi: 10.1021/bi00840a037. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doering A. M., Jansen M., Cohen S. S. Polymer synthesis in killed bacteria: lethality of 2',3'-dideoxyadenosine. J Bacteriol. 1966 Sep;92(3):565–574. doi: 10.1128/jb.92.3.565-574.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Faras A. J., Taylor J. M., Levinson W. E., Goodman H. M., Bishop J. M. RNA-directed DNA polymerase of Rous sarcoma virus: initiation of synthesis with 70 S viral RNA as template. J Mol Biol. 1973 Sep 5;79(1):163–183. doi: 10.1016/0022-2836(73)90277-5. [DOI] [PubMed] [Google Scholar]
  6. Furman P. A., Fyfe J. A., St Clair M. H., Weinhold K., Rideout J. L., Freeman G. A., Lehrman S. N., Bolognesi D. P., Broder S., Mitsuya H. Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8333–8337. doi: 10.1073/pnas.83.21.8333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fyfe J. A., Keller P. M., Furman P. A., Miller R. L., Elion G. B. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J Biol Chem. 1978 Dec 25;253(24):8721–8727. [PubMed] [Google Scholar]
  8. Fyfe J. A., McKee S. A., Keller P. M. Altered thymidine-thymidylate kinases from strains of herpes simplex virus with modified drug sensitivities to acyclovir and (E)-5-(2-bromovinyl)-2'-deoxyuridine. Mol Pharmacol. 1983 Sep;24(2):316–323. [PubMed] [Google Scholar]
  9. HUBERT-HABART M., COHEN S. S. The toxicity of 9-beta-D-arabinofuranosyladenine to purine-requiring Escherichia coli. Biochim Biophys Acta. 1962 May 21;59:468–471. doi: 10.1016/0006-3002(62)90198-1. [DOI] [PubMed] [Google Scholar]
  10. Harvey R. J. Metabolic regulation in glucose-limited chemostat cultures of Escherichia coli. J Bacteriol. 1970 Nov;104(2):698–706. doi: 10.1128/jb.104.2.698-706.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lin T. S., Prusoff W. H. Synthesis and biological activity of several amino analogues of thymidine. J Med Chem. 1978 Jan;21(1):109–112. [PubMed] [Google Scholar]
  12. Mitsuya H., Weinhold K. J., Furman P. A., St Clair M. H., Lehrman S. N., Gallo R. C., Bolognesi D., Barry D. W., Broder S. 3'-Azido-3'-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7096–7100. doi: 10.1073/pnas.82.20.7096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moses R. E. DNA synthesis in toluene-treated cells of Escherichia coli. Methods Enzymol. 1974;29:219–224. doi: 10.1016/0076-6879(74)29023-2. [DOI] [PubMed] [Google Scholar]
  14. OKAZAKI R., KORNBERG A. DEOXYTHYMIDINE KINASE OF ESCHERICHIA COLI. II. KINETICS AND FEEDBACK CONTROL. J Biol Chem. 1964 Jan;239:275–284. [PubMed] [Google Scholar]
  15. Payne S. H., Ames B. N. A procedure for rapid extraction and high-pressure liquid chromatographic separation of the nucleotides and other small molecules from bacterial cells. Anal Biochem. 1982 Jun;123(1):151–161. doi: 10.1016/0003-2697(82)90636-4. [DOI] [PubMed] [Google Scholar]
  16. Saito H., Tomioka H. Thymidine kinase of bacteria: activity of the enzyme in actinomycetes and related organisms. J Gen Microbiol. 1984 Jul;130(7):1863–1870. doi: 10.1099/00221287-130-7-1863. [DOI] [PubMed] [Google Scholar]
  17. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smoler D., Molineux I., Baltimore D. Direction of polymerization by the avian myeloblastosis virus deoxyribonucleic acid polymerase. J Biol Chem. 1971 Dec 25;246(24):7697–7700. [PubMed] [Google Scholar]
  19. Toji L., Cohen S. S. Termination of deoxyribonucleic acid in Escherichia coli by 2',3'-dideoxyadenosine. J Bacteriol. 1970 Aug;103(2):323–328. doi: 10.1128/jb.103.2.323-328.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zimmerman T. P., Rideout J. L., Wolberg G., Duncan G. S., Elion G. B. 2-Fluoroadenosine 3':5'-monophosphate. A metabolite of 2-fluoroadenosine in mouse cytotoxic lymphocytes. J Biol Chem. 1976 Nov 10;251(21):6757–6766. [PubMed] [Google Scholar]
  21. Zimmerman T. P., Wolberg G., Duncan G. S. Inhibition of lymphocyte-mediated cytolysis by 3-deazaadenosine: evidence for a methylation reaction essential to cytolysis. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6220–6224. doi: 10.1073/pnas.75.12.6220. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES