Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1987 Feb;31(2):286–291. doi: 10.1128/aac.31.2.286

Cloning and expression of genes responsible for altered penicillin-binding proteins 3a and 3b in Haemophilus influenzae.

F Malouin, A B Schryvers, L E Bryan
PMCID: PMC174707  PMID: 3551833

Abstract

A Haemophilus influenzae strain (T-1,3) possessing clinical beta-lactam resistance due to altered penicillin-binding protein 3 was used to construct a recombinant cosmid gene bank in Escherichia coli. Three of the recombinant cosmids were capable of transforming a susceptible H. influenzae strain (Rdnov) simultaneously to moxalactam resistance and altered the binding of penicillin-binding proteins 3a and 3b to [35S]penicillin G. Restriction endonuclease mapping of one of the recombinant cosmids, pLB100, was performed to facilitate subsequent subcloning of the gene(s) responsible for the altered penicillin-binding protein 3 (a and b) binding phenotype. Subcloning of individual fragments derived from pLB100 indicated that two adjacent fragments of DNA were both capable of transforming a susceptible Haemophilus strain to moxalactam resistance and altered penicillin-binding protein 3 binding. Expression of plasmid-coded proteins in minicells indicated that one fragment coded for a major 55,000-molecular-weight polypeptide and that the second contained a C-terminal coding region that expressed a 28,000-molecular-weight polypeptide when fused to the N-terminal region of the tetracycline resistance gene. Initial attempts at labeling the plasmid-coded proteins expressed in minicells with [35S]penicillin G were unsuccessful.

Full text

PDF
286

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balganesh M., Setlow J. K. Differential behavior of plasmids containing chromosomal DNA insertions of various sizes during transformation and conjugation in Haemophilus influenzae. J Bacteriol. 1985 Jan;161(1):141–146. doi: 10.1128/jb.161.1.141-146.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell S. M., Plowman D. Mechanisms of ampicillin resistance in Haemophilus influenzae from respiratory tract. Lancet. 1980 Feb 9;1(8163):279–280. doi: 10.1016/s0140-6736(80)90778-3. [DOI] [PubMed] [Google Scholar]
  3. Godfrey A. J., Bryan L. E., Rabin H. R. beta-Lactam-resistant Pseudomonas aeruginosa with modified penicillin-binding proteins emerging during cystic fibrosis treatment. Antimicrob Agents Chemother. 1981 May;19(5):705–711. doi: 10.1128/aac.19.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hedge P. J., Spratt B. G. Amino acid substitutions that reduce the affinity of penicillin-binding protein 3 of Escherichia coli for cephalexin. Eur J Biochem. 1985 Aug 15;151(1):111–121. doi: 10.1111/j.1432-1033.1985.tb09075.x. [DOI] [PubMed] [Google Scholar]
  5. Hedge P. J., Spratt B. G. Resistance to beta-lactam antibiotics by re-modelling the active site of an E. coli penicillin-binding protein. Nature. 1985 Dec 5;318(6045):478–480. doi: 10.1038/318478a0. [DOI] [PubMed] [Google Scholar]
  6. Herriott R. M., Meyer E. M., Vogt M. Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol. 1970 Feb;101(2):517–524. doi: 10.1128/jb.101.2.517-524.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hohn B., Collins J. A small cosmid for efficient cloning of large DNA fragments. Gene. 1980 Nov;11(3-4):291–298. doi: 10.1016/0378-1119(80)90069-4. [DOI] [PubMed] [Google Scholar]
  8. Istre G. R., Conner J. S., Glode M. P., Hopkins R. S. Increasing ampicillin-resistance rates in Hemophilus influenzae meningitis. Am J Dis Child. 1984 Apr;138(4):366–369. doi: 10.1001/archpedi.1984.02140420032012. [DOI] [PubMed] [Google Scholar]
  9. Kenny J. F., Isburg C. D., Michaels R. H. Meningitis due to Haemophilus influenzae type b resistant to both ampicillin and chloramphenicol. Pediatrics. 1980 Jul;66(1):14–16. [PubMed] [Google Scholar]
  10. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  11. Legerski R. J., Hodnett J. L., Gray H. B., Jr Extracellular nucleases of pseudomonas BAL 31. III. Use of the double-strand deoxyriboexonuclease activity as the basis of a convenient method for the mapping of fragments of DNA produced by cleavage with restriction enzymes. Nucleic Acids Res. 1978 May;5(5):1445–1464. doi: 10.1093/nar/5.5.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Malouin F., Bryan L. E. Modification of penicillin-binding proteins as mechanisms of beta-lactam resistance. Antimicrob Agents Chemother. 1986 Jul;30(1):1–5. doi: 10.1128/aac.30.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mendelman P. M., Chaffin D. O., Stull T. L., Rubens C. E., Mack K. D., Smith A. L. Characterization of non-beta-lactamase-mediated ampicillin resistance in Haemophilus influenzae. Antimicrob Agents Chemother. 1984 Aug;26(2):235–244. doi: 10.1128/aac.26.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Offit P. A., Campos J. M., Plotkin S. A. Ampicillin-resistant, beta-lactamase-negative haemophilus influenzae type b. Pediatrics. 1982 Feb;69(2):230–232. [PubMed] [Google Scholar]
  16. Parr T. R., Jr, Bryan L. E. Mechanism of resistance of an ampicillin-resistant, beta-lactamase-negative clinical isolate of Haemophilus influenzae type b to beta-lactam antibiotics. Antimicrob Agents Chemother. 1984 Jun;25(6):747–753. doi: 10.1128/aac.25.6.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Philpott-Howard J. Antibiotic resistance and Haemophilus influenzae. J Antimicrob Chemother. 1984 Mar;13(3):199–200. doi: 10.1093/jac/13.3.199. [DOI] [PubMed] [Google Scholar]
  18. Spratt B. G. Properties of the penicillin-binding proteins of Escherichia coli K12,. Eur J Biochem. 1977 Jan;72(2):341–352. doi: 10.1111/j.1432-1033.1977.tb11258.x. [DOI] [PubMed] [Google Scholar]
  19. Takahashi S., Nagano Y. Rapid procedure for isolation of plasmid DNA and application to epidemiological analysis. J Clin Microbiol. 1984 Oct;20(4):608–613. doi: 10.1128/jcm.20.4.608-613.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tormo A., Ayala J. A., de Pedro M. A., Aldea M., Vicente M. Interaction of FtsA and PBP3 proteins in the Escherichia coli septum. J Bacteriol. 1986 Jun;166(3):985–992. doi: 10.1128/jb.166.3.985-992.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Westerman E. L., Puls J., Medina J. R. Epiglottitis due to ampicillin-tolerant Haemophilus influenzae type b. South Med J. 1984 Mar;77(3):386–387. doi: 10.1097/00007611-198403000-00031. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES