Skip to main content
Thorax logoLink to Thorax
. 2004 Jul;59(7):569–573. doi: 10.1136/thx.2003.016667

Glutathione S transferase deficiency and passive smoking increase childhood asthma

M Kabesch 1, C Hoefler 1, D Carr 1, W Leupold 1, S Weiland 1, E von Mutius 1
PMCID: PMC1747082  PMID: 15223862

Abstract

Background: It has been suggested that the genetically determined deficiency of glutathione S transferase (GST) enzymes involved in the detoxification of environmental tobacco smoke (ETS) components may contribute to the development of asthma.

Methods: A large population of German schoolchildren (n = 3054) was genotyped for deficiencies of the GST isoforms M1 and T1. The association between GSTM1 and GSTT1 genotypes and asthma as well as atopy was investigated with respect to current and in utero ETS exposure.

Results: In children lacking the GSTM1 allele who were exposed to current ETS the risk for current asthma (OR 5.5, 95% CI 1.6 to 18.6) and asthma symptoms such as wheeze ever (OR 2.8, 95% CI 1.3 to 6.0), current wheezing (OR 4.7, 95% CI 1.8 to 12.6) and shortness of breath (OR 8.9, 95% CI 2.1 to 38.4) was higher than in GSTM1 positive individuals without ETS exposure. Hints of an interaction between ETS exposure and GSTM1 deficiency were identified. In utero smoke exposure in GSTT1 deficient children was associated with significant decrements in lung function compared with GSTT1 positive children not exposed to ETS.

Conclusions: GSTM1 and GSTT1 deficiency may increase the adverse health effects of in utero and current smoke exposure.

Full Text

The Full Text of this article is available as a PDF (102.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrov Kroum, Cascorbi Ingolf, Rojas Margarita, Bouvier Guy, Kriek Erik, Bartsch Helmut. CYP1A1 and GSTM1 genotypes affect benzo[a]pyrene DNA adducts in smokers' lung: comparison with aromatic/hydrophobic adduct formation. Carcinogenesis. 2002 Dec;23(12):1969–1977. doi: 10.1093/carcin/23.12.1969. [DOI] [PubMed] [Google Scholar]
  2. Baldini M., Lohman I. C., Halonen M., Erickson R. P., Holt P. G., Martinez F. D. A Polymorphism* in the 5' flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respir Cell Mol Biol. 1999 May;20(5):976–983. doi: 10.1165/ajrcmb.20.5.3494. [DOI] [PubMed] [Google Scholar]
  3. Botto L. D., Khoury M. J. Commentary: facing the challenge of gene-environment interaction: the two-by-four table and beyond. Am J Epidemiol. 2001 May 15;153(10):1016–1020. doi: 10.1093/aje/153.10.1016. [DOI] [PubMed] [Google Scholar]
  4. Chen C. L., Liu Q., Relling M. V. Simultaneous characterization of glutathione S-transferase M1 and T1 polymorphisms by polymerase chain reaction in American whites and blacks. Pharmacogenetics. 1996 Apr;6(2):187–191. doi: 10.1097/00008571-199604000-00005. [DOI] [PubMed] [Google Scholar]
  5. Cook D. G., Strachan D. P., Carey I. M. Health effects of passive smoking. 9. Parental smoking and spirometric indices in children. Thorax. 1998 Oct;53(10):884–893. doi: 10.1136/thx.53.10.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cook D. G., Strachan D. P. Health effects of passive smoking-10: Summary of effects of parental smoking on the respiratory health of children and implications for research. Thorax. 1999 Apr;54(4):357–366. doi: 10.1136/thx.54.4.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cook D. G., Strachan D. P. Health effects of passive smoking. 3. Parental smoking and prevalence of respiratory symptoms and asthma in school age children. Thorax. 1997 Dec;52(12):1081–1094. doi: 10.1136/thx.52.12.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cook D. G., Whincup P. H., Papacosta O., Strachan D. P., Jarvis M. J., Bryant A. Relation of passive smoking as assessed by salivary cotinine concentration and questionnaire to spirometric indices in children. Thorax. 1993 Jan;48(1):14–20. doi: 10.1136/thx.48.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gilliland Frank D., Gauderman W. James, Vora Hita, Rappaport Edward, Dubeau Louis. Effects of glutathione-S-transferase M1, T1, and P1 on childhood lung function growth. Am J Respir Crit Care Med. 2002 Sep 1;166(5):710–716. doi: 10.1164/rccm.2112065. [DOI] [PubMed] [Google Scholar]
  10. Gilliland Frank D., Li Yu-Fen, Dubeau Louis, Berhane Kiros, Avol Edward, McConnell Rob, Gauderman W. James, Peters John M. Effects of glutathione S-transferase M1, maternal smoking during pregnancy, and environmental tobacco smoke on asthma and wheezing in children. Am J Respir Crit Care Med. 2002 Aug 15;166(4):457–463. doi: 10.1164/rccm.2112064. [DOI] [PubMed] [Google Scholar]
  11. Gilliland Frank D., Li Yu-Fen, Saxon Andrew, Diaz-Sanchez David. Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet. 2004 Jan 10;363(9403):119–125. doi: 10.1016/S0140-6736(03)15262-2. [DOI] [PubMed] [Google Scholar]
  12. Ivaschenko T. E., Sideleva O. G., Baranov V. S. Glutathione- S-transferase micro and theta gene polymorphisms as new risk factors of atopic bronchial asthma. J Mol Med (Berl) 2001 Sep 6;80(1):39–43. doi: 10.1007/s001090100274. [DOI] [PubMed] [Google Scholar]
  13. Kabesch Michael, Peters Wilfried, Carr David, Leupold Wolfgang, Weiland Stephan K., von Mutius Erika. Association between polymorphisms in caspase recruitment domain containing protein 15 and allergy in two German populations. J Allergy Clin Immunol. 2003 Apr;111(4):813–817. doi: 10.1067/mai.2003.1336. [DOI] [PubMed] [Google Scholar]
  14. Kato Harubumi, Ichinose Yukito, Ohta Morio, Hata Enjo, Tsubota Noriaki, Tada Hirohito, Watanabe Yoh, Wada Hiromi, Tsuboi Masahiro, Hamajima Nobuyuki. A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung. N Engl J Med. 2004 Apr 22;350(17):1713–1721. doi: 10.1056/NEJMoa032792. [DOI] [PubMed] [Google Scholar]
  15. Lazarus Ross, Vercelli Donata, Palmer Lyle J., Klimecki Walt J., Silverman Edwin K., Richter Brent, Riva Alberto, Ramoni Marco, Martinez Fernando D., Weiss Scott T. Single nucleotide polymorphisms in innate immunity genes: abundant variation and potential role in complex human disease. Immunol Rev. 2002 Dec;190:9–25. doi: 10.1034/j.1600-065x.2002.19002.x. [DOI] [PubMed] [Google Scholar]
  16. Löfroth G. Environmental tobacco smoke: overview of chemical composition and genotoxic components. Mutat Res. 1989 Feb;222(2):73–80. doi: 10.1016/0165-1218(89)90021-9. [DOI] [PubMed] [Google Scholar]
  17. Menegon A., Board P. G., Blackburn A. C., Mellick G. D., Le Couteur D. G. Parkinson's disease, pesticides, and glutathione transferase polymorphisms. Lancet. 1998 Oct 24;352(9137):1344–1346. doi: 10.1016/s0140-6736(98)03453-9. [DOI] [PubMed] [Google Scholar]
  18. Oddoze C., Dubus J. C., Badier M., Thirion X., Pauli A. M., Pastor J., Bruguerolle B. Urinary cotinine and exposure to parental smoking in a population of children with asthma. Clin Chem. 1999 Apr;45(4):505–509. [PubMed] [Google Scholar]
  19. Ollikainen T., Hirvonen A., Norppa H. Influence of GSTT1 genotype on sister chromatid exchange induction by styrene-7,8-oxide in cultured human lymphocytes. Environ Mol Mutagen. 1998;31(4):311–315. doi: 10.1002/(sici)1098-2280(1998)31:4<311::aid-em2>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  20. Reiner Anat, Yekutieli Daniel, Benjamini Yoav. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics. 2003 Feb 12;19(3):368–375. doi: 10.1093/bioinformatics/btf877. [DOI] [PubMed] [Google Scholar]
  21. Ryberg D., Skaug V., Hewer A., Phillips D. H., Harries L. W., Wolf C. R., Ogreid D., Ulvik A., Vu P., Haugen A. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis. 1997 Jul;18(7):1285–1289. doi: 10.1093/carcin/18.7.1285. [DOI] [PubMed] [Google Scholar]
  22. Sheehan D., Meade G., Foley V. M., Dowd C. A. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J. 2001 Nov 15;360(Pt 1):1–16. doi: 10.1042/0264-6021:3600001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weiland S. K., von Mutius E., Hirsch T., Duhme H., Fritzsch C., Werner B., Hüsing A., Stender M., Renz H., Leupold W. Prevalence of respiratory and atopic disorders among children in the East and West of Germany five years after unification. Eur Respir J. 1999 Oct;14(4):862–870. doi: 10.1034/j.1399-3003.1999.14d23.x. [DOI] [PubMed] [Google Scholar]
  24. van Poppel G., de Vogel N., van Balderen P. J., Kok F. J. Increased cytogenetic damage in smokers deficient in glutathione S-transferase isozyme mu. Carcinogenesis. 1992 Feb;13(2):303–305. doi: 10.1093/carcin/13.2.303. [DOI] [PubMed] [Google Scholar]
  25. von Ehrenstein O. S., von Mutius E., Maier E., Hirsch T., Carr D., Schaal W., Roscher A. A., Olgemöller B., Nicolai T., Weiland S. K. Lung function of school children with low levels of alpha1-antitrypsin and tobacco smoke exposure. Eur Respir J. 2002 Jun;19(6):1099–1106. doi: 10.1183/09031936.02.00104302. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

[Web-only Appendix]
thorax_59_7_569__1.pdf (193.7KB, pdf)

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES