Skip to main content
Thorax logoLink to Thorax
. 2004 Sep;59(9):757–760. doi: 10.1136/thx.2003.014894

Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath

C Lane 1, D Knight 1, S Burgess 1, P Franklin 1, F Horak 1, J Legg 1, A Moeller 1, S Stick 1
PMCID: PMC1747143  PMID: 15333851

Abstract

Background: The fractional concentration of nitric oxide (NO) in exhaled breath (FeNO) is increased in asthma. There is a general assumption that NO synthase (NOS) 2 in epithelium is the main source of NO in exhaled breath. However, there is no direct evidence to support the assumption and data from animal models suggest that non-inducible NOS systems have important roles in determining airway reactivity, regulating inflammation, and might contribute significantly to NO measured in exhaled breath.

Methods: Bronchial epithelial cells were obtained from healthy, atopic, and asthmatic children by non-bronchoscopic brushing. Exhaled NO (FeNO) was measured directly using a fast response chemiluminescence NO analyser. RNA was extracted from the epithelial cells and real time polymerase chain reaction was used to determine the expression of NOS isoenzymes. NOS2 was examined in macrophages and epithelial cells by immunohistochemistry.

Results: NOS1 mRNA was not detectable. NOS3 mRNA was detected in 36 of 43 samples at lower levels than NOS2 mRNA which was detectable in all samples. The median FeNO was 15.5 ppb (95% CI 10 to 18.1). There was a significant correlation between FeNO and NOS2 expression (R = 0.672, p<0.001). All epithelial cells exhibited NOS2 staining, whereas staining in the macrophages was variable and not related to phenotype.

Conclusions: Only NOS2 expression was associated with FeNO in respiratory epithelial cells obtained from children (R = 0.672; p<0.001). This suggests that FeNO variability is largely determined by epithelial NOS2 expression with little contribution from other isoforms.

Full Text

The Full Text of this article is available as a PDF (86.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano K., Chee C. B., Gaston B., Lilly C. M., Gerard C., Drazen J. M., Stamler J. S. Constitutive and inducible nitric oxide synthase gene expression, regulation, and activity in human lung epithelial cells. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10089–10093. doi: 10.1073/pnas.91.21.10089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chambers R. C. Gene expression profiling: good housekeeping and a clean message. Thorax. 2002 Sep;57(9):754–756. doi: 10.1136/thorax.57.9.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cook S., Vollenweider P., Ménard B., Egli M., Nicod P., Scherrer U. Increased eNO and pulmonary iNOS expression in eNOS null mice. Eur Respir J. 2003 May;21(5):770–773. doi: 10.1183/09031936.03.00121203. [DOI] [PubMed] [Google Scholar]
  4. Dötsch Jörg, Puls Jan, Klimek Thorsten, Rascher Wolfgang. Reduction of neuronal and inducible nitric oxide synthase gene expression in patients with cystic fibrosis. Eur Arch Otorhinolaryngol. 2002 Apr;259(4):222–226. doi: 10.1007/s00405-001-0436-8. [DOI] [PubMed] [Google Scholar]
  5. Franklin P. J., Taplin R., Stick S. M. A community study of exhaled nitric oxide in healthy children. Am J Respir Crit Care Med. 1999 Jan;159(1):69–73. doi: 10.1164/ajrccm.159.1.9804134. [DOI] [PubMed] [Google Scholar]
  6. Geigel E. J., Hyde R. W., Perillo I. B., Torres A., Perkins P. T., Pietropaoli A. P., Frasier L. M., Frampton M. W., Utell M. J. Rate of nitric oxide production by lower alveolar airways of human lungs. J Appl Physiol (1985) 1999 Jan;86(1):211–221. doi: 10.1152/jappl.1999.86.1.211. [DOI] [PubMed] [Google Scholar]
  7. Hansel Trevor T., Kharitonov Sergei A., Donnelly Louise E., Erin Edward M., Currie Mark G., Moore William M., Manning Pamela T., Recker David P., Barnes Peter J. A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics. FASEB J. 2003 May 8;17(10):1298–1300. doi: 10.1096/fj.02-0633fje. [DOI] [PubMed] [Google Scholar]
  8. Hegewald M. J., Crapo R. O., Jensen R. L. Intraindividual peak flow variability. Chest. 1995 Jan;107(1):156–161. doi: 10.1378/chest.107.1.156. [DOI] [PubMed] [Google Scholar]
  9. Jakubzick Claudia, Choi Esther S., Carpenter Kristin J., Kunkel Steven L., Evanoff Holly, Martinez Fernando J., Flaherty Kevin R., Toews Galen B., Colby Thomas V., Travis William D. Human pulmonary fibroblasts exhibit altered interleukin-4 and interleukin-13 receptor subunit expression in idiopathic interstitial pneumonia. Am J Pathol. 2004 Jun;164(6):1989–2001. doi: 10.1016/S0002-9440(10)63759-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kharitonov S. A., Yates D., Barnes P. J. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur Respir J. 1995 Feb;8(2):295–297. doi: 10.1183/09031936.95.08020295. [DOI] [PubMed] [Google Scholar]
  11. Kobzik L., Bredt D. S., Lowenstein C. J., Drazen J., Gaston B., Sugarbaker D., Stamler J. S. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol. 1993 Oct;9(4):371–377. doi: 10.1165/ajrcmb/9.4.371. [DOI] [PubMed] [Google Scholar]
  12. Maziak W., Loukides S., Culpitt S., Sullivan P., Kharitonov S. A., Barnes P. J. Exhaled nitric oxide in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998 Mar;157(3 Pt 1):998–1002. doi: 10.1164/ajrccm.157.3.97-05009. [DOI] [PubMed] [Google Scholar]
  13. Pedroletti Christophe, Högman Marieann, Meriläinen Pekka, Nordvall Lennart S., Hedlin Gunilla, Alving Kjell. Nitric oxide airway diffusing capacity and mucosal concentration in asthmatic schoolchildren. Pediatr Res. 2003 Jul 2;54(4):496–501. doi: 10.1203/01.PDR.0000081761.33822.36. [DOI] [PubMed] [Google Scholar]
  14. Saur Dieter, Seidler Barbara, Paehge Heidi, Schusdziarra Volker, Allescher Hans-Dieter. Complex regulation of human neuronal nitric-oxide synthase exon 1c gene transcription. Essential role of Sp and ZNF family members of transcription factors. J Biol Chem. 2002 Apr 17;277(28):25798–25814. doi: 10.1074/jbc.M109802200. [DOI] [PubMed] [Google Scholar]
  15. Silkoff P. E., McClean P. A., Slutsky A. S., Furlott H. G., Hoffstein E., Wakita S., Chapman K. R., Szalai J. P., Zamel N. Marked flow-dependence of exhaled nitric oxide using a new technique to exclude nasal nitric oxide. Am J Respir Crit Care Med. 1997 Jan;155(1):260–267. doi: 10.1164/ajrccm.155.1.9001322. [DOI] [PubMed] [Google Scholar]
  16. Silkoff P. E., Robbins R. A., Gaston B., Lundberg J. O., Townley R. G. Endogenous nitric oxide in allergic airway disease. J Allergy Clin Immunol. 2000 Mar;105(3):438–448. doi: 10.1067/mai.2000.104938. [DOI] [PubMed] [Google Scholar]
  17. Tulić M. K., Wale J. L., Holt P. G., Sly P. D. Differential effects of nitric oxide synthase inhibitors in an in vivo allergic rat model. Eur Respir J. 2000 May;15(5):870–877. doi: 10.1034/j.1399-3003.2000.15e10.x. [DOI] [PubMed] [Google Scholar]
  18. Wang C. H., Liu C. Y., Lin H. C., Yu C. T., Chung K. F., Kuo H. P. Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J. 1998 Apr;11(4):809–815. doi: 10.1183/09031936.98.11040809. [DOI] [PubMed] [Google Scholar]
  19. Yates D. H., Kharitonov S. A., Thomas P. S., Barnes P. J. Endogenous nitric oxide is decreased in asthmatic patients by an inhibitor of inducible nitric oxide synthase. Am J Respir Crit Care Med. 1996 Jul;154(1):247–250. doi: 10.1164/ajrccm.154.1.8680689. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES