Abstract
Background: Most patients with cystic fibrosis (CF) have a ΔF508 mutation resulting in abnormal retention of mutant gene protein (ΔF508-CFTR) within the cell. This study was undertaken to investigate ΔF508-CFTR trafficking in native cells from patients with CF with the aim of discovering pharmacological agents that can move ΔF508-CFTR to its correct location in the apical cell membrane.
Method: Nasal epithelial cells were obtained by brushing from individuals with CF. CFTR location was determined using immunofluorescence and confocal imaging in untreated cells and cells treated with sildenafil. The effect of sildenafil treatment on CFTR chloride transport function was measured in CF15 cells using an iodide efflux assay.
Results: In most untreated CF cells ΔF508-CFTR was mislocalised within the cell at a site close to the nucleus. Exposure of cells to sildenafil (2 hours at 37°C) resulted in recruitment of ΔF508-CFTR to the apical membrane and the appearance of chloride transport activity. Sildenafil also increased ΔF508-CFTR trafficking in cells from individuals with CF with a single copy ΔF508 (ΔF508/4016ins) or with a newly described CF trafficking mutation (R1283M).
Conclusions: The findings provide proof of principle for sildenafil as a ΔF508-CFTR trafficking drug and give encouragement for future testing of sildenafil and related PDE5 inhibitors in patients with CF.
Full Text
The Full Text of this article is available as a PDF (160.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becq F., Mettey Y., Gray M. A., Galietta L. J., Dormer R. L., Merten M., Métayé T., Chappe V., Marvingt-Mounir C., Zegarra-Moran O. Development of substituted Benzo[c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel. J Biol Chem. 1999 Sep 24;274(39):27415–27425. doi: 10.1074/jbc.274.39.27415. [DOI] [PubMed] [Google Scholar]
- Cheadle J. P., Meredith A. L., al-Jader L. N. A new missense mutation (R1283M) in exon 20 of the cystic fibrosis transmembrane conductance regulator gene. Hum Mol Genet. 1992 May;1(2):123–125. doi: 10.1093/hmg/1.2.123. [DOI] [PubMed] [Google Scholar]
- Denning G. M., Ostedgaard L. S., Welsh M. J. Abnormal localization of cystic fibrosis transmembrane conductance regulator in primary cultures of cystic fibrosis airway epithelia. J Cell Biol. 1992 Aug;118(3):551–559. doi: 10.1083/jcb.118.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dormer R. L., Dérand R., McNeilly C. M., Mettey Y., Bulteau-Pignoux L., Métayé T., Vierfond J. M., Gray M. A., Galietta L. J., Morris M. R. Correction of delF508-CFTR activity with benzo(c)quinolizinium compounds through facilitation of its processing in cystic fibrosis airway cells. J Cell Sci. 2001 Nov;114(Pt 22):4073–4081. doi: 10.1242/jcs.114.22.4073. [DOI] [PubMed] [Google Scholar]
- Gregory R. J., Rich D. P., Cheng S. H., Souza D. W., Paul S., Manavalan P., Anderson M. P., Welsh M. J., Smith A. E. Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol Cell Biol. 1991 Aug;11(8):3886–3893. doi: 10.1128/mcb.11.8.3886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kartner N., Augustinas O., Jensen T. J., Naismith A. L., Riordan J. R. Mislocalization of delta F508 CFTR in cystic fibrosis sweat gland. Nat Genet. 1992 Aug;1(5):321–327. doi: 10.1038/ng0892-321. [DOI] [PubMed] [Google Scholar]
- Kunzelmann K., Schreiber R. CFTR, a regulator of channels. J Membr Biol. 1999 Mar 1;168(1):1–8. doi: 10.1007/s002329900492. [DOI] [PubMed] [Google Scholar]
- Kälin N., Claass A., Sommer M., Puchelle E., Tümmler B. DeltaF508 CFTR protein expression in tissues from patients with cystic fibrosis. J Clin Invest. 1999 May 15;103(10):1379–1389. doi: 10.1172/JCI5731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McPherson M. A., Pereira M. M., Lloyd Mills C., Murray K. J., Dormer R. L. A cyclic nucleotide PDE5 inhibitor corrects defective mucin secretion in submandibular cells containing antibody directed against the cystic fibrosis transmembrane conductance regulator protein. FEBS Lett. 1999 Dec 24;464(1-2):48–52. doi: 10.1016/s0014-5793(99)01672-5. [DOI] [PubMed] [Google Scholar]
- McPherson M. A., Pereira M. M., Russell D., McNeilly C. M., Morris R. M., Stratford F. L., Dormer R. L. The CFTR-mediated protein secretion defect: pharmacological correction. Pflugers Arch. 2001 Jul 13;443 (Suppl 1):S121–S126. doi: 10.1007/s004240100658. [DOI] [PubMed] [Google Scholar]
- Penque D., Mendes F., Beck S., Farinha C., Pacheco P., Nogueira P., Lavinha J., Malhó R., Amaral M. D. Cystic fibrosis F508del patients have apically localized CFTR in a reduced number of airway cells. Lab Invest. 2000 Jun;80(6):857–868. doi: 10.1038/labinvest.3780090. [DOI] [PubMed] [Google Scholar]
- Puchelle E., Gaillard D., Ploton D., Hinnrasky J., Fuchey C., Boutterin M. C., Jacquot J., Dreyer D., Pavirani A., Dalemans W. Differential localization of the cystic fibrosis transmembrane conductance regulator in normal and cystic fibrosis airway epithelium. Am J Respir Cell Mol Biol. 1992 Nov;7(5):485–491. doi: 10.1165/ajrcmb/7.5.485. [DOI] [PubMed] [Google Scholar]
- Stratford Fiona L. L., Pereira Malcolm M. C., Becq Frederic, McPherson Margaret A., Dormer Robert L. Benzo(c)quinolizinium drugs inhibit degradation of Delta F508-CFTR cytoplasmic domain. Biochem Biophys Res Commun. 2003 Jan 10;300(2):524–530. doi: 10.1016/s0006-291x(02)02883-8. [DOI] [PubMed] [Google Scholar]
- Zeitlin P. L. Novel pharmacologic therapies for cystic fibrosis. J Clin Invest. 1999 Feb;103(4):447–452. doi: 10.1172/JCI6346. [DOI] [PMC free article] [PubMed] [Google Scholar]