Skip to main content
Thorax logoLink to Thorax
. 2005 Jun 30;60(11):916–924. doi: 10.1136/thx.2004.037937

Effect of salbutamol on lung function and chest wall volumes at rest and during exercise in COPD

A Aliverti 1, K Rodger 1, R Dellaca 1, N Stevenson 1, M Lo 1, A Pedotti 1, P Calverley 1
PMCID: PMC1747234  PMID: 15994253

Abstract

Background: Inhaled bronchodilators can increase exercise capacity in chronic obstructive pulmonary disease (COPD) by reducing dynamic hyperinflation, but treatment is not always effective. This may reflect the degree to which the abdomen allows dynamic hyperinflation to occur.

Method: A double blind, randomised, crossover trial of the effect of 5 mg nebulised salbutamol or saline on endurance exercise time was conducted in 18 patients with COPD of mean (SD) age 67.1 (6.3) years and mean (SD) forced expiratory volume in 1 second (FEV1) of 40.6 (15.0)% predicted. Breathing pattern, metabolic variables, dyspnoea intensity, and total and regional chest wall volumes were measured non-invasively by optoelectronic plethysmography (OEP) at rest and during exercise.

Results: Salbutamol increased FEV1, forced vital capacity (FVC) and inspiratory capacity and reduced functional residual capacity (FRC) and residual volume significantly. OEP showed the change in resting FRC to be mainly in the abdominal compartment. Although the mean (SE) end expiratory chest wall volume was 541 (118) ml lower (p<0.001) at the end of exercise, the endurance time was unchanged by the bronchodilator. Changes in resting lung volumes were smaller when exercise duration did not improve, but FEV1 still rose significantly after active drug. After the bronchodilator these patients tried to reduce the end expiratory lung volume when exercising, while those exercising longer continued to allow end expiratory abdominal wall volume to rise. The change to a more euvolumic breathing pattern was associated with a lower oxygen pulse and a significant fall in endurance time with higher isotime levels of dyspnoea.

Conclusions: Nebulised salbutamol improved forced expiratory flow in most patients with COPD, but less hyperinflated patients tried to reduce the abdominal compartmental volume after active treatment and this reduced their exercise capacity. Identifying these patients has important therapeutic implications, as does an understanding of the mechanisms that control chest wall muscle recruitment.

Full Text

The Full Text of this article is available as a PDF (131.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aliverti A., Stevenson N., Dellacà R. L., Lo Mauro A., Pedotti A., Calverley P. M. A. Regional chest wall volumes during exercise in chronic obstructive pulmonary disease. Thorax. 2004 Mar;59(3):210–216. doi: 10.1136/thorax.2003.011494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aliverti Andrea, Iandelli Iacopo, Duranti Roberto, Cala Stephen J., Kayser Bengt, Kelly Susan, Misuri Gianni, Pedotti Antonio, Scano Giorgio, Sliwinski Pawel. Respiratory muscle dynamics and control during exercise with externally imposed expiratory flow limitation. J Appl Physiol (1985) 2002 May;92(5):1953–1963. doi: 10.1152/japplphysiol.01222.2000. [DOI] [PubMed] [Google Scholar]
  3. Borg G. A. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. [PubMed] [Google Scholar]
  4. Cala S. J., Kenyon C. M., Ferrigno G., Carnevali P., Aliverti A., Pedotti A., Macklem P. T., Rochester D. F. Chest wall and lung volume estimation by optical reflectance motion analysis. J Appl Physiol (1985) 1996 Dec;81(6):2680–2689. doi: 10.1152/jappl.1996.81.6.2680. [DOI] [PubMed] [Google Scholar]
  5. Dellacà R. L., Santus P., Aliverti A., Stevenson N., Centanni S., Macklem P. T., Pedotti A., Calverley P. M. A. Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J. 2004 Feb;23(2):232–240. doi: 10.1183/09031936.04.00046804. [DOI] [PubMed] [Google Scholar]
  6. Duranti Roberto, Filippelli Mario, Bianchi Roberto, Romagnoli Isabella, Pellegrino Riccardo, Brusasco Vito, Scano Giorgio. Inspiratory capacity and decrease in lung hyperinflation with albuterol in COPD. Chest. 2002 Dec;122(6):2009–2014. doi: 10.1378/chest.122.6.2009. [DOI] [PubMed] [Google Scholar]
  7. Hadcroft J., Calverley P. M. Alternative methods for assessing bronchodilator reversibility in chronic obstructive pulmonary disease. Thorax. 2001 Sep;56(9):713–720. doi: 10.1136/thorax.56.9.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hay J. G., Stone P., Carter J., Church S., Eyre-Brook A., Pearson M. G., Woodcock A. A., Calverley P. M. Bronchodilator reversibility, exercise performance and breathlessness in stable chronic obstructive pulmonary disease. Eur Respir J. 1992 Jun;5(6):659–664. [PubMed] [Google Scholar]
  9. Iandelli Iacopo, Aliverti Andrea, Kayser Bengt, Dellacà Raffaele, Cala Stephen J., Duranti Roberto, Kelly Susan, Scano Giorgio, Sliwinski Pawel, Yan Sheng. Determinants of exercise performance in normal men with externally imposed expiratory flow limitation. J Appl Physiol (1985) 2002 May;92(5):1943–1952. doi: 10.1152/japplphysiol.00393.2000. [DOI] [PubMed] [Google Scholar]
  10. Iscoe S. Control of abdominal muscles. Prog Neurobiol. 1998 Nov;56(4):433–506. doi: 10.1016/s0301-0082(98)00046-x. [DOI] [PubMed] [Google Scholar]
  11. Jones P. W. Health status measurement in chronic obstructive pulmonary disease. Thorax. 2001 Nov;56(11):880–887. doi: 10.1136/thorax.56.11.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kayser B., Sliwinski P., Yan S., Tobiasz M., Macklem P. T. Respiratory effort sensation during exercise with induced expiratory-flow limitation in healthy humans. J Appl Physiol (1985) 1997 Sep;83(3):936–947. doi: 10.1152/jappl.1997.83.3.936. [DOI] [PubMed] [Google Scholar]
  13. Liesker Jeroen J. W., Wijkstra Peter J., Ten Hacken Nick H. T., Koëter Gerard H., Postma Dirkje S., Kerstjens Huib A. M. A systematic review of the effects of bronchodilators on exercise capacity in patients with COPD. Chest. 2002 Feb;121(2):597–608. doi: 10.1378/chest.121.2.597. [DOI] [PubMed] [Google Scholar]
  14. Man W. D. C., Mustfa N., Nikoletou D., Kaul S., Hart N., Rafferty G. F., Donaldson N., Polkey M. I., Moxham J. Effect of salmeterol on respiratory muscle activity during exercise in poorly reversible COPD. Thorax. 2004 Jun;59(6):471–476. doi: 10.1136/thx.2003.019620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Montes de Oca M., Rassulo J., Celli B. R. Respiratory muscle and cardiopulmonary function during exercise in very severe COPD. Am J Respir Crit Care Med. 1996 Nov;154(5):1284–1289. doi: 10.1164/ajrccm.154.5.8912737. [DOI] [PubMed] [Google Scholar]
  16. O'Donnell D. E., Flüge T., Gerken F., Hamilton A., Webb K., Aguilaniu B., Make B., Magnussen H. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J. 2004 Jun;23(6):832–840. doi: 10.1183/09031936.04.00116004. [DOI] [PubMed] [Google Scholar]
  17. O'Donnell D. E., Lam M., Webb K. A. Spirometric correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999 Aug;160(2):542–549. doi: 10.1164/ajrccm.160.2.9901038. [DOI] [PubMed] [Google Scholar]
  18. O'Donnell D. E., Voduc N., Fitzpatrick M., Webb K. A. Effect of salmeterol on the ventilatory response to exercise in chronic obstructive pulmonary disease. Eur Respir J. 2004 Jul;24(1):86–94. doi: 10.1183/09031936.04.00072703. [DOI] [PubMed] [Google Scholar]
  19. Pauwels R. A., Buist A. S., Calverley P. M., Jenkins C. R., Hurd S. S., GOLD Scientific Committee Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med. 2001 Apr;163(5):1256–1276. doi: 10.1164/ajrccm.163.5.2101039. [DOI] [PubMed] [Google Scholar]
  20. Polkey M. I., Kyroussis D., Hamnegard C. H., Mills G. H., Hughes P. D., Green M., Moxham J. Diaphragm performance during maximal voluntary ventilation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997 Feb;155(2):642–648. doi: 10.1164/ajrccm.155.2.9032207. [DOI] [PubMed] [Google Scholar]
  21. Simon M., LeBlanc P., Jobin J., Desmeules M., Sullivan M. J., Maltais F. Limitation of lower limb VO(2) during cycling exercise in COPD patients. J Appl Physiol (1985) 2001 Mar;90(3):1013–1019. doi: 10.1152/jappl.2001.90.3.1013. [DOI] [PubMed] [Google Scholar]
  22. Stark-Leyva Kristy N., Beck Ken C., Johnson Bruce D. Influence of expiratory loading and hyperinflation on cardiac output during exercise. J Appl Physiol (1985) 2004 Jan 16;96(5):1920–1927. doi: 10.1152/japplphysiol.00756.2003. [DOI] [PubMed] [Google Scholar]
  23. Sutherland E. Rand, Cherniack Reuben M. Management of chronic obstructive pulmonary disease. N Engl J Med. 2004 Jun 24;350(26):2689–2697. doi: 10.1056/NEJMra030415. [DOI] [PubMed] [Google Scholar]
  24. Vathenen A. S., Britton J. R., Ebden P., Cookson J. B., Wharrad H. J., Tattersfield A. E. High-dose inhaled albuterol in severe chronic airflow limitation. Am Rev Respir Dis. 1988 Oct;138(4):850–855. doi: 10.1164/ajrccm/138.4.850. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES