Abstract
Background: Lung disease in cystic fibrosis (CF) is established in early childhood with recurrent bacterial infections and inflammation. Using spirometry, the effect of this early lung damage cannot be measured until a child is 6 years of age when some irreversible lung damage may already have occurred. Techniques for measurement of lung function in infants and young children include raised volume rapid thoracic compression (RVRTC) and low frequency forced oscillation (LFFOT). The aim of this study was to investigate the role of inflammation and infection on a population of infants and young children with CF and to determine whether lung function in this population (measured by LFFOT) is affected by early lung disease.
Methods: Lung function was measured by LFFOT in 24 children undergoing bronchoalveolar lavage (BAL) on 27 occasions as part of an annual programme while still under general anaesthesia. Following lung function testing, three aliquots of saline were instilled into the right middle or lower lobe. The first aliquot retrieved was processed for the detection of microbes, and the remaining aliquots were pooled to assess inflammatory markers (cytology, IL-8, NE, LTB4).
Results: Inflammation (percentage and number of neutrophils) was significantly higher in children with infections (p<0.001, p = 0.04, respectively), but not in those with symptoms. Several markers of inflammation significantly correlated with LFFOT parameters (R, G, and η).
Conclusion: Infections and inflammation are established before symptoms are apparent. Inflammation is correlated with measures of parenchymal changes in lung function measured by LFFOT.
Full Text
The Full Text of this article is available as a PDF (118.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong D. S., Grimwood K., Carzino R., Carlin J. B., Olinsky A., Phelan P. D. Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ. 1995 Jun 17;310(6994):1571–1572. doi: 10.1136/bmj.310.6994.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balough K., McCubbin M., Weinberger M., Smits W., Ahrens R., Fick R. The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis. Pediatr Pulmonol. 1995 Aug;20(2):63–70. doi: 10.1002/ppul.1950200203. [DOI] [PubMed] [Google Scholar]
- Bieth J., Spiess B., Wermuth C. G. The synthesis and analytical use of a highly sensitive and convenient substrate of elastase. Biochem Med. 1974 Dec;11(4):350–357. doi: 10.1016/0006-2944(74)90134-3. [DOI] [PubMed] [Google Scholar]
- Carpagnano Giovanna E., Barnes Peter J., Geddes Duncan M., Hodson Margaret E., Kharitonov Sergei A. Increased leukotriene B4 and interleukin-6 in exhaled breath condensate in cystic fibrosis. Am J Respir Crit Care Med. 2003 Apr 15;167(8):1109–1112. doi: 10.1164/rccm.200203-179OC. [DOI] [PubMed] [Google Scholar]
- Dakin Carolyn J., Numa Andrew H., Wang He, Morton John R., Vertzyas Calypso C., Henry Richard L. Inflammation, infection, and pulmonary function in infants and young children with cystic fibrosis. Am J Respir Crit Care Med. 2002 Apr 1;165(7):904–910. doi: 10.1164/ajrccm.165.7.2010139. [DOI] [PubMed] [Google Scholar]
- Dean T. P., Dai Y., Shute J. K., Church M. K., Warner J. O. Interleukin-8 concentrations are elevated in bronchoalveolar lavage, sputum, and sera of children with cystic fibrosis. Pediatr Res. 1993 Aug;34(2):159–161. doi: 10.1203/00006450-199308000-00010. [DOI] [PubMed] [Google Scholar]
- Fredberg J. J., Stamenovic D. On the imperfect elasticity of lung tissue. J Appl Physiol (1985) 1989 Dec;67(6):2408–2419. doi: 10.1152/jappl.1989.67.6.2408. [DOI] [PubMed] [Google Scholar]
- GIBSON L. E., COOKE R. E. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics. 1959 Mar;23(3):545–549. [PubMed] [Google Scholar]
- Gappa M., Ranganathan S. C., Stocks J. Lung function testing in infants with cystic fibrosis: lessons from the past and future directions. Pediatr Pulmonol. 2001 Sep;32(3):228–245. doi: 10.1002/ppul.1113. [DOI] [PubMed] [Google Scholar]
- Hall G. L., Hantos Z., Peták F., Wildhaber J. H., Tiller K., Burton P. R., Sly P. D. Airway and respiratory tissue mechanics in normal infants. Am J Respir Crit Care Med. 2000 Oct;162(4 Pt 1):1397–1402. doi: 10.1164/ajrccm.162.4.9910028. [DOI] [PubMed] [Google Scholar]
- Hall G. L., Hantos Z., Sly P. D. Altered respiratory tissue mechanics in asymptomatic wheezy infants. Am J Respir Crit Care Med. 2001 Oct 15;164(8 Pt 1):1387–1391. doi: 10.1164/ajrccm.164.8.2012148. [DOI] [PubMed] [Google Scholar]
- Hantos Z., Daróczy B., Suki B., Nagy S., Fredberg J. J. Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol (1985) 1992 Jan;72(1):168–178. doi: 10.1152/jappl.1992.72.1.168. [DOI] [PubMed] [Google Scholar]
- Hayden M. J., Petak F., Hantos Z., Hall G., Sly P. D. Using low-frequency oscillation to detect bronchodilator responsiveness in infants. Am J Respir Crit Care Med. 1998 Feb;157(2):574–579. doi: 10.1164/ajrccm.157.2.9703089. [DOI] [PubMed] [Google Scholar]
- Khan T. Z., Wagener J. S., Bost T., Martinez J., Accurso F. J., Riches D. W. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995 Apr;151(4):1075–1082. doi: 10.1164/ajrccm/151.4.1075. [DOI] [PubMed] [Google Scholar]
- Konstan M. W., Walenga R. W., Hilliard K. A., Hilliard J. B. Leukotriene B4 markedly elevated in the epithelial lining fluid of patients with cystic fibrosis. Am Rev Respir Dis. 1993 Oct;148(4 Pt 1):896–901. doi: 10.1164/ajrccm/148.4_Pt_1.896. [DOI] [PubMed] [Google Scholar]
- Muhlebach M. S., Stewart P. W., Leigh M. W., Noah T. L. Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med. 1999 Jul;160(1):186–191. doi: 10.1164/ajrccm.160.1.9808096. [DOI] [PubMed] [Google Scholar]
- Nixon G. M., Armstrong D. S., Carzino R., Carlin J. B., Olinsky A., Robertson C. F., Grimwood K., Wainwright Claire. Early airway infection, inflammation, and lung function in cystic fibrosis. Arch Dis Child. 2002 Oct;87(4):306–311. doi: 10.1136/adc.87.4.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peták F., Hall G. L., Sly P. D. Repeated measurements of airway and parenchymal mechanics in rats by using low-frequency oscillations. J Appl Physiol (1985) 1998 May;84(5):1680–1686. doi: 10.1152/jappl.1998.84.5.1680. [DOI] [PubMed] [Google Scholar]
- Ranganathan Sarath C., Bush Andrew, Dezateux Carol, Carr Siobhan B., Hoo Ah-Fong, Lum Sooky, Madge Su, Price John, Stroobant John, Wade Angie. Relative ability of full and partial forced expiratory maneuvers to identify diminished airway function in infants with cystic fibrosis. Am J Respir Crit Care Med. 2002 Nov 15;166(10):1350–1357. doi: 10.1164/rccm.2202041. [DOI] [PubMed] [Google Scholar]
- Sly P. D., Hayden M. J., Peták F., Hantos Z. Measurement of low-frequency respiratory impedance in infants. Am J Respir Crit Care Med. 1996 Jul;154(1):161–166. doi: 10.1164/ajrccm.154.1.8680673. [DOI] [PubMed] [Google Scholar]
- Tiddens Harm A. W. M. Detecting early structural lung damage in cystic fibrosis. Pediatr Pulmonol. 2002 Sep;34(3):228–231. doi: 10.1002/ppul.10134. [DOI] [PubMed] [Google Scholar]
- Turner D. J., Lanteri C. J., LeSouef P. N., Sly P. D. Improved detection of abnormal respiratory function using forced expiration from raised lung volume in infants with cystic fibrosis. Eur Respir J. 1994 Nov;7(11):1995–1999. [PubMed] [Google Scholar]
- Wyatt H. A., Sampson A. P., Balfour-Lynn I. M., Price J. F. Production of the potent neutrophil chemokine, growth-related protein alpha (GROalpha), is not elevated in cystic fibrosis children. Respir Med. 2000 Feb;94(2):106–111. doi: 10.1053/rmed.1999.0725. [DOI] [PubMed] [Google Scholar]
