Skip to main content
Thorax logoLink to Thorax
. 2005 Mar;60(3):219–225. doi: 10.1136/thx.2004.030635

Origin of nitrite and nitrate in nasal and exhaled breath condensate and relation to nitric oxide formation

H Marteus 1, D Tornberg 1, E Weitzberg 1, U Schedin 1, K Alving 1
PMCID: PMC1747344  PMID: 15741439

Abstract

Background: Raised concentrations of nitrate and nitrite have been found in exhaled breath condensate (EBC) in airway disease, and it has been postulated that this reflects increased nitric oxide (NO) metabolism. However, the chemical and anatomical origin of nitrate and nitrite in the airways has not yet been sufficiently studied.

Methods: The fraction of exhaled NO at an exhalation flow rate of 50 ml/s (FENO) and nitrite and nitrate in EBC, nasal condensate, and saliva were measured in 17 tracheostomised and 15 non-tracheostomised subjects, all of whom were non-smokers without respiratory disease. Tracheal and oral samples were taken from the tracheostomised subjects and nasal (during velum closure) and oral samples from the non-tracheostomised subjects. Measurements were performed before and after sodium nitrate ingestion (10 mg/kg) and use of antibacterial mouthwash (chlorhexidine 0.2%).

Results: In tracheostomised subjects oral FENO increased by 90% (p<0.01) while tracheal FENO was not affected 60 minutes after nitrate ingestion. Oral EBC nitrite levels were increased 23-fold at 60 minutes (p<0.001) whereas the nitrite levels in tracheal EBC showed only a minor increase (fourfold, p<0.05). Nitrate was increased the same amount in oral and tracheal EBC at 60 minutes (2.5-fold, p<0.05). In non-tracheostomised subjects oral FENO and EBC nitrite increased after nitrate ingestion and after chlorhexidine mouthwash they approached baseline levels again (p<0.001). Nasal NO, nitrate, and nitrite were not affected by nitrate intake or mouthwash. At baseline, mouthwash with deionised water did not affect nitrite in oral EBC or saliva, whereas significant reductions were seen after antibacterial mouthwash (p<0.05 and p<0.001, respectively).

Conclusions: Besides the salivary glands, plasma nitrate is taken up by the lower airways but not the nasal airways. Nitrate levels in EBC are thus influenced by dietary intake. Nitrate is reduced to nitrite by bacterial activity which takes place primarily in the oropharyngeal tract of healthy subjects. Only oropharyngeal nitrite seems to contribute to exhaled NO in non-inflamed airways, and there is also a substantial contribution of nitrite from the oropharyngeal tract during standard collection of EBC.

Full Text

The Full Text of this article is available as a PDF (129.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alving K., Weitzberg E., Lundberg J. M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur Respir J. 1993 Oct;6(9):1368–1370. [PubMed] [Google Scholar]
  2. Balint B., Donnelly L. E., Hanazawa T., Kharitonov S. A., Barnes P. J. Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke. Thorax. 2001 Jun;56(6):456–461. doi: 10.1136/thorax.56.6.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen D. W., Atlas S. L. Chlorhexidine gluconate in periodontal treatment. Compend Suppl. 1994;(18):S711–S717. [PubMed] [Google Scholar]
  4. Corradi M., Montuschi P., Donnelly L. E., Pesci A., Kharitonov S. A., Barnes P. J. Increased nitrosothiols in exhaled breath condensate in inflammatory airway diseases. Am J Respir Crit Care Med. 2001 Mar;163(4):854–858. doi: 10.1164/ajrccm.163.4.2001108. [DOI] [PubMed] [Google Scholar]
  5. Corradi Massimo, Pesci Alberto, Casana Romano, Alinovi Rossella, Goldoni Matteo, Vettori Maria Vittoria, Cuomo Angelo. Nitrate in exhaled breath condensate of patients with different airway diseases. Nitric Oxide. 2003 Feb;8(1):26–30. doi: 10.1016/s1089-8603(02)00128-3. [DOI] [PubMed] [Google Scholar]
  6. Csoma Zsuzsanna, Bush Andrew, Wilson Nicola M., Donnelly Louise, Balint Beatrix, Barnes Peter J., Kharitonov Sergei A. Nitric oxide metabolites are not reduced in exhaled breath condensate of patients with primary ciliary dyskinesia. Chest. 2003 Aug;124(2):633–638. doi: 10.1378/chest.124.2.633. [DOI] [PubMed] [Google Scholar]
  7. Cunningham S., McColm J. R., Ho L. P., Greening A. P., Marshall T. G. Measurement of inflammatory markers in the breath condensate of children with cystic fibrosis. Eur Respir J. 2000 May;15(5):955–957. doi: 10.1034/j.1399-3003.2000.15e24.x. [DOI] [PubMed] [Google Scholar]
  8. Danieli M. G., Cappelli M., Malcangi G., Logullo F., Salvi A., Danieli G. Long term effectiveness of intravenous immunoglobulin in Churg-Strauss syndrome. Ann Rheum Dis. 2004 Dec;63(12):1649–1654. doi: 10.1136/ard.2003.015453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duncan C., Dougall H., Johnston P., Green S., Brogan R., Leifert C., Smith L., Golden M., Benjamin N. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med. 1995 Jun;1(6):546–551. doi: 10.1038/nm0695-546. [DOI] [PubMed] [Google Scholar]
  10. Dwyer Terry M. Cigarette smoke-induced airway inflammation as sampled by the expired breath condensate. Am J Med Sci. 2003 Oct;326(4):174–178. doi: 10.1097/00000441-200310000-00004. [DOI] [PubMed] [Google Scholar]
  11. Effros Richard M., Hoagland Kelly W., Bosbous Mark, Castillo Daniel, Foss Bradley, Dunning Marshall, Gare Meir, Lin Wen, Sun Feng. Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med. 2002 Mar 1;165(5):663–669. doi: 10.1164/ajrccm.165.5.2101018. [DOI] [PubMed] [Google Scholar]
  12. Formanek W., Inci D., Lauener R. P., Wildhaber J. H., Frey U., Hall G. L. Elevated nitrite in breath condensates of children with respiratory disease. Eur Respir J. 2002 Mar;19(3):487–491. doi: 10.1183/09031936.02.00101202. [DOI] [PubMed] [Google Scholar]
  13. Ganas K., Loukides S., Papatheodorou G., Panagou P., Kalogeropoulos N. Total nitrite/nitrate in expired breath condensate of patients with asthma. Respir Med. 2001 Aug;95(8):649–654. doi: 10.1053/rmed.2001.1117. [DOI] [PubMed] [Google Scholar]
  14. Gessner Christian, Hammerschmidt Stefan, Kuhn Hartmut, Lange Tobias, Engelmann Lothar, Schauer Joachim, Wirtz Hubert. Exhaled breath condensate nitrite and its relation to tidal volume in acute lung injury. Chest. 2003 Sep;124(3):1046–1052. doi: 10.1378/chest.124.3.1046. [DOI] [PubMed] [Google Scholar]
  15. Grasemann H., Michler E., Wallot M., Ratjen F. Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol. 1997 Sep;24(3):173–177. doi: 10.1002/(sici)1099-0496(199709)24:3<173::aid-ppul2>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  16. Gustafsson L. E., Leone A. M., Persson M. G., Wiklund N. P., Moncada S. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun. 1991 Dec 16;181(2):852–857. doi: 10.1016/0006-291x(91)91268-h. [DOI] [PubMed] [Google Scholar]
  17. Hamid Q., Springall D. R., Riveros-Moreno V., Chanez P., Howarth P., Redington A., Bousquet J., Godard P., Holgate S., Polak J. M. Induction of nitric oxide synthase in asthma. Lancet. 1993 Dec 18;342(8886-8887):1510–1513. doi: 10.1016/s0140-6736(05)80083-2. [DOI] [PubMed] [Google Scholar]
  18. Harlid R., Andersson G., Frostell C. G., Jörbeck H. J., Ortqvist A. B. Respiratory tract colonization and infection in patients with chronic tracheostomy. A one-year study in patients living at home. Am J Respir Crit Care Med. 1996 Jul;154(1):124–129. doi: 10.1164/ajrccm.154.1.8680667. [DOI] [PubMed] [Google Scholar]
  19. Hassett Daniel J., Cuppoletti John, Trapnell Bruce, Lymar Sergei V., Rowe John J., Yoon Sang Sun, Hilliard George M., Parvatiyar Kislay, Kamani Moneesha C., Wozniak Daniel J. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev. 2002 Dec 5;54(11):1425–1443. doi: 10.1016/s0169-409x(02)00152-7. [DOI] [PubMed] [Google Scholar]
  20. Ho L. P., Innes J. A., Greening A. P. Nitrite levels in breath condensate of patients with cystic fibrosis is elevated in contrast to exhaled nitric oxide. Thorax. 1998 Aug;53(8):680–684. doi: 10.1136/thx.53.8.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hunt J. F., Fang K., Malik R., Snyder A., Malhotra N., Platts-Mills T. A., Gaston B. Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med. 2000 Mar;161(3 Pt 1):694–699. doi: 10.1164/ajrccm.161.3.9911005. [DOI] [PubMed] [Google Scholar]
  22. Hunt J., Byrns R. E., Ignarro L. J., Gaston B. Condensed expirate nitrite as a home marker for acute asthma. Lancet. 1995 Nov 4;346(8984):1235–1236. doi: 10.1016/s0140-6736(95)92947-9. [DOI] [PubMed] [Google Scholar]
  23. Jarrett William A., Ribes Julie, Manaligod Jose M. Biofilm formation on tracheostomy tubes. Ear Nose Throat J. 2002 Sep;81(9):659–661. [PubMed] [Google Scholar]
  24. Jungersten L., Edlund A., Petersson A. S., Wennmalm A. Plasma nitrate as an index of nitric oxide formation in man: analyses of kinetics and confounding factors. Clin Physiol. 1996 Jul;16(4):369–379. doi: 10.1111/j.1475-097x.1996.tb00726.x. [DOI] [PubMed] [Google Scholar]
  25. Karadag B., James A. J., Gültekin E., Wilson N. M., Bush A. Nasal and lower airway level of nitric oxide in children with primary ciliary dyskinesia. Eur Respir J. 1999 Jun;13(6):1402–1405. doi: 10.1183/09031936.99.13614069. [DOI] [PubMed] [Google Scholar]
  26. Kayyali Usamah S., Budhiraja Rohit, Pennella Corin M., Cooray Samantha, Lanzillo Joe J., Chalkley Roger, Hassoun Paul M. Upregulation of xanthine oxidase by tobacco smoke condensate in pulmonary endothelial cells. Toxicol Appl Pharmacol. 2003 Apr 1;188(1):59–68. doi: 10.1016/s0041-008x(02)00076-5. [DOI] [PubMed] [Google Scholar]
  27. Kelley T. J., Drumm M. L. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J Clin Invest. 1998 Sep 15;102(6):1200–1207. doi: 10.1172/JCI2357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kharitonov Sergei A., Barnes Peter J. Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers. 2002 Jan-Feb;7(1):1–32. doi: 10.1080/13547500110104233. [DOI] [PubMed] [Google Scholar]
  29. Latzin P., Beck J., Bartenstein A., Griese M. Comparison of exhaled breath condensate from nasal and oral collection. Eur J Med Res. 2003 Nov 12;8(11):505–510. [PubMed] [Google Scholar]
  30. Lundberg J. O., Carlsson S., Engstrand L., Morcos E., Wiklund N. P., Weitzberg E. Urinary nitrite: more than a marker of infection. Urology. 1997 Aug;50(2):189–191. doi: 10.1016/S0090-4295(97)00257-4. [DOI] [PubMed] [Google Scholar]
  31. Lundberg J. O., Nordvall S. L., Weitzberg E., Kollberg H., Alving K. Exhaled nitric oxide in paediatric asthma and cystic fibrosis. Arch Dis Child. 1996 Oct;75(4):323–326. doi: 10.1136/adc.75.4.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lundberg J. O., Weitzberg E., Nordvall S. L., Kuylenstierna R., Lundberg J. M., Alving K. Primarily nasal origin of exhaled nitric oxide and absence in Kartagener's syndrome. Eur Respir J. 1994 Aug;7(8):1501–1504. doi: 10.1183/09031936.94.07081501. [DOI] [PubMed] [Google Scholar]
  33. Lundberg Jon O., Weitzberg Eddie, Cole Jeff A., Benjamin Nigel. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004 Jul;2(7):593–602. doi: 10.1038/nrmicro929. [DOI] [PubMed] [Google Scholar]
  34. Nightingale J. A., Rogers D. F., Barnes P. J. Effect of inhaled ozone on exhaled nitric oxide, pulmonary function, and induced sputum in normal and asthmatic subjects. Thorax. 1999 Dec;54(12):1061–1069. doi: 10.1136/thx.54.12.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Olin A. C., Aldenbratt A., Ekman A., Ljungkvist G., Jungersten L., Alving K., Torén K. Increased nitric oxide in exhaled air after intake of a nitrate-rich meal. Respir Med. 2001 Feb;95(2):153–158. doi: 10.1053/rmed.2000.1010. [DOI] [PubMed] [Google Scholar]
  36. Sergeev N. S., Ananiadi L. I., L'vov N. P., Kretovich W. L. The nitrate reductase activity of milk xanthine oxidase. J Appl Biochem. 1985 Apr;7(2):86–92. [PubMed] [Google Scholar]
  37. Tannenbaum S. R., Weisman M., Fett D. The effect of nitrate intake on nitrite formation in human saliva. Food Cosmet Toxicol. 1976 Dec;14(6):549–552. doi: 10.1016/s0015-6264(76)80006-5. [DOI] [PubMed] [Google Scholar]
  38. Tosun I., Ustun N. S. Nitrate content of lettuce grown in the greenhouse. Bull Environ Contam Toxicol. 2004 Jan;72(1):109–113. doi: 10.1007/s00128-003-0247-2. [DOI] [PubMed] [Google Scholar]
  39. Wagner D. A., Schultz D. S., Deen W. M., Young V. R., Tannenbaum S. R. Metabolic fate of an oral dose of 15N-labeled nitrate in humans: effect of diet supplementation with ascorbic acid. Cancer Res. 1983 Apr;43(4):1921–1925. [PubMed] [Google Scholar]
  40. Weitzberg E., Lundberg J. O. Nonenzymatic nitric oxide production in humans. Nitric Oxide. 1998;2(1):1–7. doi: 10.1006/niox.1997.0162. [DOI] [PubMed] [Google Scholar]
  41. Zetterquist W., Pedroletti C., Lundberg J. O., Alving K. Salivary contribution to exhaled nitric oxide. Eur Respir J. 1999 Feb;13(2):327–333. doi: 10.1034/j.1399-3003.1999.13b18.x. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES