Skip to main content
Thorax logoLink to Thorax
. 2005 Apr;60(4):305–313. doi: 10.1136/thx.2003.018796

Acute hypoxia simultaneously induces the expression of gp91phox and endothelial nitric oxide synthase in the porcine pulmonary artery

S Muzaffar 1, N Shukla 1, G Angelini 1, J Jeremy 1
PMCID: PMC1747371  PMID: 15790986

Abstract

Background: The effect of hypoxia on the formation of superoxide (O2), the expression of gp91phox and endothelial NO synthase (eNOS) were studied in pig intact pulmonary artery (PA) segments and PA vascular smooth muscle cells (PAVSMCs) and PA endothelial cells (PAECs).

Methods: Segments and cells were incubated under hypoxic conditions for 2 hours (with or without enzyme inhibitors) and the formation of O2 measured spectrophotometrically. Protein expression was assessed using Western blotting and immunocytochemistry.

Results: Hypoxia promoted the formation of O2 in PA segments, PAVSMCs and PAECs, an effect inhibited by diphenylene iodonium and apocynin (NAD[P]H oxidase inhibitors). Hypoxia induced O2 formation was enhanced by inhibition of eNOS and augmented by endotoxin and cytokines and re-oxygenation. Hypoxia also promoted the expression of gp91phox and eNOS. In intact PA segments hypoxia induced the expression of nitrotyrosine and eNOS in the endothelium.

Conclusions: The simultaneous upregulation of NAD[P]H oxidase and eNOS in response to hypoxia in the PA results in the simultaneous formation of O2, NO, and ONOO. This may represent either a protective mechanism designed to counter the pro-oxidant effect of hypoxia or a novel pathological mechanism underlying the progression of acute respiratory distress syndrome (ARDS).

Full Text

The Full Text of this article is available as a PDF (379.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baboolal Hemanth A., Ichinose Fumito, Ullrich Roman, Kawai Noriko, Bloch Kenneth D., Zapol Warren M. Reactive oxygen species scavengers attenuate endotoxin-induced impairment of hypoxic pulmonary vasoconstriction in mice. Anesthesiology. 2002 Nov;97(5):1227–1233. doi: 10.1097/00000542-200211000-00028. [DOI] [PubMed] [Google Scholar]
  2. Beckman J. S. -OONO: rebounding from nitric oxide. Circ Res. 2001 Aug 17;89(4):295–297. [PubMed] [Google Scholar]
  3. Chabot F., Mitchell J. A., Gutteridge J. M., Evans T. W. Reactive oxygen species in acute lung injury. Eur Respir J. 1998 Mar;11(3):745–757. [PubMed] [Google Scholar]
  4. Chow Chung-Wai, Herrera Abreu Maria Teresa, Suzuki Tomoko, Downey Gregory P. Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol. 2003 Oct;29(4):427–431. doi: 10.1165/rcmb.F278. [DOI] [PubMed] [Google Scholar]
  5. Darley-Usmar V., Halliwell B. Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res. 1996 May;13(5):649–662. doi: 10.1023/a:1016079012214. [DOI] [PubMed] [Google Scholar]
  6. Dawson T. L., Gores G. J., Nieminen A. L., Herman B., Lemasters J. J. Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes. Am J Physiol. 1993 Apr;264(4 Pt 1):C961–C967. doi: 10.1152/ajpcell.1993.264.4.C961. [DOI] [PubMed] [Google Scholar]
  7. Dempsey E. C., Frid M. G., Aldashev A. A., Das M., Stenmark K. R. Heterogeneity in the proliferative response of bovine pulmonary artery smooth muscle cells to mitogens and hypoxia: importance of protein kinase C. Can J Physiol Pharmacol. 1997 Jul;75(7):936–944. [PubMed] [Google Scholar]
  8. Fagan K. A., Fouty B. W., Tyler R. C., Morris K. G., Jr, Hepler L. K., Sato K., LeCras T. D., Abman S. H., Weinberger H. D., Huang P. L. The pulmonary circulation of homozygous or heterozygous eNOS-null mice is hyperresponsive to mild hypoxia. J Clin Invest. 1999 Jan;103(2):291–299. doi: 10.1172/JCI3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Folkerts G., Kloek J., Muijsers R. B., Nijkamp F. P. Reactive nitrogen and oxygen species in airway inflammation. Eur J Pharmacol. 2001 Oct 19;429(1-3):251–262. doi: 10.1016/s0014-2999(01)01324-3. [DOI] [PubMed] [Google Scholar]
  10. Griendling K. K., Sorescu D., Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000 Mar 17;86(5):494–501. doi: 10.1161/01.res.86.5.494. [DOI] [PubMed] [Google Scholar]
  11. Herget J., Wilhelm J., Novotná J., Eckhardt A., Vytásek R., Mrázková L., Ostádal M. A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension. Physiol Res. 2000;49(5):493–501. [PubMed] [Google Scholar]
  12. Hoffmann A., Gloe T., Pohl U. Hypoxia-induced upregulation of eNOS gene expression is redox-sensitive: a comparison between hypoxia and inhibitors of cell metabolism. J Cell Physiol. 2001 Jul;188(1):33–44. doi: 10.1002/jcp.1092. [DOI] [PubMed] [Google Scholar]
  13. Irukayama-Tomobe Y., Sakai S., Miyauchi T. Chronic treatment with probucol effectively inhibits progression of pulmonary hypertension in rats. Life Sci. 2000 Sep 8;67(16):2017–2023. doi: 10.1016/s0024-3205(00)00780-3. [DOI] [PubMed] [Google Scholar]
  14. Jeremy J. Y., Rowe D., Emsley A. M., Newby A. C. Nitric oxide and the proliferation of vascular smooth muscle cells. Cardiovasc Res. 1999 Aug 15;43(3):580–594. doi: 10.1016/s0008-6363(99)00171-6. [DOI] [PubMed] [Google Scholar]
  15. Jeremy Jamie Y., Shukla Nilima, Muzaffar Saima, Handley Alexandra, Angelini Gianni D. Reactive oxygen species, vascular disease and cardiovascular surgery. Curr Vasc Pharmacol. 2004 Jul;2(3):229–236. doi: 10.2174/1570161043385691. [DOI] [PubMed] [Google Scholar]
  16. Kaminski P. M., Wolin M. S. Hypoxia increases superoxide anion production from bovine coronary microvessels, but not cardiac myocytes, via increased xanthine oxidase. Microcirculation. 1994 Dec;1(4):231–236. doi: 10.3109/10739689409146750. [DOI] [PubMed] [Google Scholar]
  17. Klinger James R. Inhaled nitric oxide in ARDS. Crit Care Clin. 2002 Jan;18(1):45-68, vi. doi: 10.1016/s0749-0704(03)00064-2. [DOI] [PubMed] [Google Scholar]
  18. Le Quynh-Thu, Denko Nicholas C., Giaccia Amato J. Hypoxic gene expression and metastasis. Cancer Metastasis Rev. 2004 Aug-Dec;23(3-4):293–310. doi: 10.1023/B:CANC.0000031768.89246.d7. [DOI] [PubMed] [Google Scholar]
  19. Lenaz G. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life. 2001 Sep-Nov;52(3-5):159–164. doi: 10.1080/15216540152845957. [DOI] [PubMed] [Google Scholar]
  20. Li Chuanyu, Jackson Robert M. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol. 2002 Feb;282(2):C227–C241. doi: 10.1152/ajpcell.00112.2001. [DOI] [PubMed] [Google Scholar]
  21. Liesching Timothy, Kwok Henry, Hill Nicholas S. Acute applications of noninvasive positive pressure ventilation. Chest. 2003 Aug;124(2):699–713. doi: 10.1378/chest.124.2.699. [DOI] [PubMed] [Google Scholar]
  22. López Angel, Lorente Jose Angel, Steingrub Jay, Bakker Jan, McLuckie Angela, Willatts Sheila, Brockway Michael, Anzueto Antonio, Holzapfel Laurent, Breen Desmond. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med. 2004 Jan;32(1):21–30. doi: 10.1097/01.CCM.0000105581.01815.C6. [DOI] [PubMed] [Google Scholar]
  23. MacMillan-Crow L. A., Crow J. P., Kerby J. D., Beckman J. S., Thompson J. A. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11853–11858. doi: 10.1073/pnas.93.21.11853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marshall C., Mamary A. J., Verhoeven A. J., Marshall B. E. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol. 1996 Nov;15(5):633–644. doi: 10.1165/ajrcmb.15.5.8918370. [DOI] [PubMed] [Google Scholar]
  25. Muzaffar S., Jeremy J. Y., Angelini G. D., Stuart-Smith K., Shukla N. Role of the endothelium and nitric oxide synthases in modulating superoxide formation induced by endotoxin and cytokines in porcine pulmonary arteries. Thorax. 2003 Jul;58(7):598–604. doi: 10.1136/thorax.58.7.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Muzaffar Saima, Shukla Nilima, Angelini Gianni, Jeremy Jamie Y. Nitroaspirins and morpholinosydnonimine but not aspirin inhibit the formation of superoxide and the expression of gp91phox induced by endotoxin and cytokines in pig pulmonary artery vascular smooth muscle cells and endothelial cells. Circulation. 2004 Aug 23;110(9):1140–1147. doi: 10.1161/01.CIR.0000139851.50067.E4. [DOI] [PubMed] [Google Scholar]
  27. Muzaffar Saima, Shukla Nilima, Lobo Clinton, Angelini Gianni D., Jeremy Jamie Y. Iloprost inhibits superoxide formation and gp91phox expression induced by the thromboxane A2 analogue U46619, 8-isoprostane F2alpha, prostaglandin F2alpha, cytokines and endotoxin in the pig pulmonary artery. Br J Pharmacol. 2004 Jan 12;141(3):488–496. doi: 10.1038/sj.bjp.0705626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nathens Avery B., Neff Margaret J., Jurkovich Gregory J., Klotz Patricia, Farver Katherine, Ruzinski John T., Radella Frank, Garcia Iris, Maier Ronald V. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg. 2002 Dec;236(6):814–822. doi: 10.1097/00000658-200212000-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nims R. W., Cook J. C., Krishna M. C., Christodoulou D., Poore C. M., Miles A. M., Grisham M. B., Wink D. A. Colorimetric assays for nitric oxide and nitrogen oxide species formed from nitric oxide stock solutions and donor compounds. Methods Enzymol. 1996;268:93–105. doi: 10.1016/s0076-6879(96)68012-4. [DOI] [PubMed] [Google Scholar]
  30. O'Connor M., Salzman A. L., Szabó C. Role of peroxynitrite in the protein oxidation and apoptotic DNA fragmentation in vascular smooth muscle cells stimulated with bacterial lipopolysaccharide and interferon-gamma. Shock. 1997 Dec;8(6):439–443. [PubMed] [Google Scholar]
  31. Pacht Eric R., DeMichele Stephen J., Nelson Jeffrey L., Hart Judy, Wennberg Ann K., Gadek James E. Enteral nutrition with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants reduces alveolar inflammatory mediators and protein influx in patients with acute respiratory distress syndrome. Crit Care Med. 2003 Feb;31(2):491–500. doi: 10.1097/01.CCM.0000049952.96496.3E. [DOI] [PubMed] [Google Scholar]
  32. Quinlan Gregory J., Mumby Sharon, Martin Greg S., Bernard Gordon R., Gutteridge John M. C., Evans Timothy W. Albumin influences total plasma antioxidant capacity favorably in patients with acute lung injury. Crit Care Med. 2004 Mar;32(3):755–759. doi: 10.1097/01.ccm.0000114574.18641.5d. [DOI] [PubMed] [Google Scholar]
  33. Steinhorn R. H., Albert G., Swartz D. D., Russell J. A., Levine C. R., Davis J. M. Recombinant human superoxide dismutase enhances the effect of inhaled nitric oxide in persistent pulmonary hypertension. Am J Respir Crit Care Med. 2001 Sep 1;164(5):834–839. doi: 10.1164/ajrccm.164.5.2010104. [DOI] [PubMed] [Google Scholar]
  34. Steudel W., Scherrer-Crosbie M., Bloch K. D., Weimann J., Huang P. L., Jones R. C., Picard M. H., Zapol W. M. Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3. J Clin Invest. 1998 Jun 1;101(11):2468–2477. doi: 10.1172/JCI2356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stuart-Smith K., Jeremy J. Y. Microvessel damage in acute respiratory distress syndrome: the answer may not be NO. Br J Anaesth. 2001 Aug;87(2):272–279. doi: 10.1093/bja/87.2.272. [DOI] [PubMed] [Google Scholar]
  36. Terada L. S., Guidot D. M., Leff J. A., Willingham I. R., Hanley M. E., Piermattei D., Repine J. E. Hypoxia injures endothelial cells by increasing endogenous xanthine oxidase activity. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3362–3366. doi: 10.1073/pnas.89.8.3362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Verhoeven A. J., Bolscher B. G., Meerhof L. J., van Zwieten R., Keijer J., Weening R. S., Roos D. Characterization of two monoclonal antibodies against cytochrome b558 of human neutrophils. Blood. 1989 May 1;73(6):1686–1694. [PubMed] [Google Scholar]
  38. Wang Tianlong, El Kebir Driss, Blaise Gilbert. Inhaled nitric oxide in 2003: a review of its mechanisms of action. Can J Anaesth. 2003 Oct;50(8):839–846. doi: 10.1007/BF03019384. [DOI] [PubMed] [Google Scholar]
  39. Weinacker A. B., Vaszar L. T. Acute respiratory distress syndrome: physiology and new management strategies. Annu Rev Med. 2001;52:221–237. doi: 10.1146/annurev.med.52.1.221. [DOI] [PubMed] [Google Scholar]
  40. Weinberger B., Laskin D. L., Heck D. E., Laskin J. D. The toxicology of inhaled nitric oxide. Toxicol Sci. 2001 Jan;59(1):5–16. doi: 10.1093/toxsci/59.1.5. [DOI] [PubMed] [Google Scholar]
  41. Zou M. H., Ullrich V. Peroxynitrite formed by simultaneous generation of nitric oxide and superoxide selectively inhibits bovine aortic prostacyclin synthase. FEBS Lett. 1996 Mar 11;382(1-2):101–104. doi: 10.1016/0014-5793(96)00160-3. [DOI] [PubMed] [Google Scholar]
  42. Zouki C., Zhang S. L., Chan J. S., Filep J. G. Peroxynitrite induces integrin-dependent adhesion of human neutrophils to endothelial cells via activation of the Raf-1/MEK/Erk pathway. FASEB J. 2000 Nov 9;15(1):25–27. doi: 10.1096/fj.00-0521fje. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES