Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1987 Mar;31(3):421–429. doi: 10.1128/aac.31.3.421

Effect of lipid composition and liposome size on toxicity and in vitro fungicidal activity of liposome-intercalated amphotericin B.

F C Szoka Jr, D Milholland, M Barza
PMCID: PMC174744  PMID: 3579259

Abstract

Intercalation of amphotericin B into liposomes at a 10 mol% drug/lipid ratio decreased its cytotoxicity by 3- to 90-fold in cultured murine cells and reduced its lethality by 2- to 8-fold in a median lethal dose (LD50) test in mice when compared with the commercial deoxycholate-solubilized drug (LD50 = 2.3 mg/kg). The cytotoxicity and lethality of the liposomal preparations were a function of their lipid composition and diameter. There was no correlation between the reduction of toxicity in the tissue culture assay and the reduction of lethality in the LD50 test. The rank order of reduction of lethality was sterol-containing liposomes greater than solid liposomes greater than fluid liposomes. In general, small sterol-containing vesicles were less lethal than large vesicles of the same composition. Intercalation of amphotericin B in sterol or solid liposomes increased not only the LD50 but also the time to death. The organ distribution of amphotericin B 24 h after intravenous administration was similar whether the drug was given as the commercial deoxycholate preparation or in liposomes. Finally, there were no differences among any of the formulations in their fungicidal activity against Candida tropicalis and Saccharomyces cerevisiae in vitro. The lesser and slower lethality of the liposomal and detergent-solubilized drug suggests that the mechanism by which liposomes reduce the lethality of amphotericin B is by slowing its rate of transfer to a sensitive cellular target.

Full text

PDF
421

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abra R. M., Schreier H., Szoka F. C. The use of a new radioactive-iodine labeled lipid marker to follow in vivo disposition of liposomes: comparison with an encapsulated aqueous space marker. Res Commun Chem Pathol Pharmacol. 1982 Aug;37(2):199–213. [PubMed] [Google Scholar]
  2. Aracava Y., Smith I. C., Schreier S. Effect of amphotericin B on membranes: a spin probe study. Biochemistry. 1981 Sep 29;20(20):5702–5707. doi: 10.1021/bi00523a010. [DOI] [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. Barza M., Baum J., Tremblay C., Szoka F., D'Amico D. J. Ocular toxicity of intravitreally injected liposomal amphotericin B in rhesus monkeys. Am J Ophthalmol. 1985 Aug 15;100(2):259–263. doi: 10.1016/0002-9394(85)90791-3. [DOI] [PubMed] [Google Scholar]
  5. Bolard J., Seigneuret M., Boudet G. Interaction between phospholipid bilayer membranes and the polyene antibiotic amphotericin B: lipid state and cholesterol content dependence. Biochim Biophys Acta. 1980 Jun 20;599(1):280–293. doi: 10.1016/0005-2736(80)90074-7. [DOI] [PubMed] [Google Scholar]
  6. Campbell P. I. Toxicity of some charged lipids used in liposome preparations. Cytobios. 1983;37(145):21–26. [PubMed] [Google Scholar]
  7. Chen W. C., Bittman R. Kinetics of association of amphotericin B with vesicles. Biochemistry. 1977 Sep 20;16(19):4145–4149. doi: 10.1021/bi00638a002. [DOI] [PubMed] [Google Scholar]
  8. Child P., op den Kamp J. A., Roelofsen B., van Deenen L. L. Molecular species composition of membrane phosphatidylcholine influences the rate of cholesterol efflux from human erythrocytes and vesicles of erythrocyte lipid. Biochim Biophys Acta. 1985 Apr 11;814(2):237–246. doi: 10.1016/0005-2736(85)90441-9. [DOI] [PubMed] [Google Scholar]
  9. Christiansen K. J., Bernard E. M., Gold J. W., Armstrong D. Distribution and activity of amphotericin B in humans. J Infect Dis. 1985 Nov;152(5):1037–1043. doi: 10.1093/infdis/152.5.1037. [DOI] [PubMed] [Google Scholar]
  10. Graybill J. R., Craven P. C. Antifungal agents used in systemic mycoses. Activity and therapeutic use. Drugs. 1983 Jan;25(1):41–62. doi: 10.2165/00003495-198325010-00003. [DOI] [PubMed] [Google Scholar]
  11. Graybill J. R., Craven P. C., Taylor R. L., Williams D. M., Magee W. E. Treatment of murine cryptococcosis with liposome-associated amphotericin B. J Infect Dis. 1982 May;145(5):748–752. doi: 10.1093/infdis/145.2.748. [DOI] [PubMed] [Google Scholar]
  12. Hopfer R. L., Mills K., Mehta R., Lopez-Berestein G., Fainstein V., Juliano R. L. In vitro antifungal activities of amphotericin B and liposome-encapsulated amphotericin B. Antimicrob Agents Chemother. 1984 Mar;25(3):387–389. doi: 10.1128/aac.25.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hsuchen C. C., Feingold D. S. Selective membrane toxicity of the polyene antibiotics: studies on lecithin membrane models (liposomes). Antimicrob Agents Chemother. 1973 Sep;4(3):309–315. doi: 10.1128/aac.4.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hunt C. A., Rustum Y. M., Mayhew E., Papahadjopoulos D. Retention of cytosine arabinoside in mouse lung following intravenous administration in liposomes of different size. Drug Metab Dispos. 1979 May-Jun;7(3):124–128. [PubMed] [Google Scholar]
  15. Kinsky S. C. Antibiotic interaction with model membranes. Annu Rev Pharmacol. 1970;10:119–142. doi: 10.1146/annurev.pa.10.040170.001003. [DOI] [PubMed] [Google Scholar]
  16. Kotler-Brajtburg J., Medoff G., Schlessinger D., Kobayashi G. S. Amphotericin B and filipin effects on L and HeLa cells: dose response. Antimicrob Agents Chemother. 1977 May;11(5):803–808. doi: 10.1128/aac.11.5.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lai M. Z., Düzgüneş N., Szoka F. C. Effects of replacement of the hydroxyl group of cholesterol and tocopherol on the thermotropic behavior of phospholipid membranes. Biochemistry. 1985 Mar 26;24(7):1646–1653. doi: 10.1021/bi00328a012. [DOI] [PubMed] [Google Scholar]
  18. Lopez-Berestein G., Fainstein V., Hopfer R., Mehta K., Sullivan M. P., Keating M., Rosenblum M. G., Mehta R., Luna M., Hersh E. M. Liposomal amphotericin B for the treatment of systemic fungal infections in patients with cancer: a preliminary study. J Infect Dis. 1985 Apr;151(4):704–710. doi: 10.1093/infdis/151.4.704. [DOI] [PubMed] [Google Scholar]
  19. Lopez-Berestein G., Mehta R., Hopfer R. L., Mills K., Kasi L., Mehta K., Fainstein V., Luna M., Hersh E. M., Juliano R. Treatment and prophylaxis of disseminated infection due to Candida albicans in mice with liposome-encapsulated amphotericin B. J Infect Dis. 1983 May;147(5):939–945. doi: 10.1093/infdis/147.5.939. [DOI] [PubMed] [Google Scholar]
  20. Malewicz B., Jenkin H. M., Borowski E. Dissociation between the induction of potassium efflux and cytostatic activity of polyene macrolides in mammalian cells. Antimicrob Agents Chemother. 1980 Apr;17(4):699–706. doi: 10.1128/aac.17.4.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Malewicz B., Jenkin H. M., Borowski E. Repair of membrane alterations induced in baby hamster kidney cells by polyene macrolide antibiotics. Antimicrob Agents Chemother. 1981 Feb;19(2):238–247. doi: 10.1128/aac.19.2.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mayhew J. W., Fiore C., Murray T., Barza M. An internally-standardized assay for amphotericin B in tissues and plasma. J Chromatogr. 1983 May 13;274:271–279. doi: 10.1016/s0378-4347(00)84430-8. [DOI] [PubMed] [Google Scholar]
  23. Medoff G., Brajtburg J., Kobayashi G. S., Bolard J. Antifungal agents useful in therapy of systemic fungal infections. Annu Rev Pharmacol Toxicol. 1983;23:303–330. doi: 10.1146/annurev.pa.23.040183.001511. [DOI] [PubMed] [Google Scholar]
  24. Mehta R., Lopez-Berestein G., Hopfer R., Mills K., Juliano R. L. Liposomal amphotericin B is toxic to fungal cells but not to mammalian cells. Biochim Biophys Acta. 1984 Mar 14;770(2):230–234. doi: 10.1016/0005-2736(84)90135-4. [DOI] [PubMed] [Google Scholar]
  25. New R. R., Chance M. L., Heath S. Antileishmanial activity of amphotericin and other antifungal agents entrapped in liposomes. J Antimicrob Chemother. 1981 Nov;8(5):371–381. doi: 10.1093/jac/8.5.371. [DOI] [PubMed] [Google Scholar]
  26. Olson F., Hunt C. A., Szoka F. C., Vail W. J., Papahadjopoulos D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta. 1979 Oct 19;557(1):9–23. doi: 10.1016/0005-2736(79)90085-3. [DOI] [PubMed] [Google Scholar]
  27. Panosian C. B., Barza M., Szoka F., Wyler D. J. Treatment of experimental cutaneous leishmaniasis with liposome-intercalated amphotericin B. Antimicrob Agents Chemother. 1984 May;25(5):655–656. doi: 10.1128/aac.25.5.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Szoka F., Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508. doi: 10.1146/annurev.bb.09.060180.002343. [DOI] [PubMed] [Google Scholar]
  29. Taylor R. L., Williams D. M., Craven P. C., Graybill J. R., Drutz D. J., Magee W. E. Amphotericin B in liposomes: a novel therapy for histoplasmosis. Am Rev Respir Dis. 1982 May;125(5):610–611. doi: 10.1164/arrd.1982.125.5.610. [DOI] [PubMed] [Google Scholar]
  30. Tremblay C., Barza M., Fiore C., Szoka F. Efficacy of liposome-intercalated amphotericin B in the treatment of systemic candidiasis in mice. Antimicrob Agents Chemother. 1984 Aug;26(2):170–173. doi: 10.1128/aac.26.2.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vertut-Croquin A., Bolard J., Chabbert M., Gary-Bobo C. Differences in the interaction of the polyene antibiotic amphotericin B with cholesterol- or ergosterol-containing phospholipid vesicles. A circular dichroism and permeability study. Biochemistry. 1983 Jun 7;22(12):2939–2944. doi: 10.1021/bi00281a024. [DOI] [PubMed] [Google Scholar]
  32. Witzke N. M., Bittman R. Dissociation kinetics and equilibrium binding properties of polyene antibiotic complexes with phosphatidylcholine/sterol vesicles. Biochemistry. 1984 Apr 10;23(8):1668–1674. doi: 10.1021/bi00303a014. [DOI] [PubMed] [Google Scholar]
  33. van Hoogevest P., de Kruijff B. Effect of amphotericin B on cholesterol-containing liposomes of egg phosphatidylcholine and didocosenoyl phosphatidylcholine. A refinement of the model for the formation of pores by amphotericin B in membranes. Biochim Biophys Acta. 1978 Aug 17;511(3):397–407. doi: 10.1016/0005-2736(78)90276-6. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES