Abstract
Background: Individuals with severely impaired lung function have an increased risk of lung cancer. Whether milder reductions in forced expiratory volume in 1 second (FEV1) also increase the risk of lung cancer is controversial. Moreover, there is little consensus on whether men and women have similar risks for lung cancer for similar decreases in FEV1.
Methods: A search was conducted of PubMed and EMBASE from January 1966 to January 2005 and studies that examined the relationship between FEV1 and lung cancer were identified. The search was limited to studies that were population based, employed a prospective design, were large in size (⩾5000 participants), and adjusted for cigarette smoking status.
Results: Twenty eight abstracts were identified, six of which did not report FEV1 and eight did not adjust for smoking. Included in this report are four studies that reported FEV1 in quintiles. The risk of lung cancer increased with decreasing FEV1. Compared with the highest quintile of FEV1 (>100% of predicted), the lowest quintile of FEV1 (<∼70% of predicted) was associated with a 2.23 fold (95% confidence interval (CI) 1.73 to 2.86) increase in the risk for lung cancer in men and a 3.97 fold increase in women (95% CI 1.93 to 8.25). Even relatively small decrements in FEV1 (∼90% of predicted) increased the risk for lung cancer by 30% in men (95% CI 1.05 to 1.62) and 2.64 fold in women (95% CI 1.30 to 5.31).
Conclusion: Reduced FEV1 is strongly associated with lung cancer. Even a relatively modest reduction in FEV1 is a significant predictor of lung cancer, especially among women.
Full Text
The Full Text of this article is available as a PDF (112.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N., Shigenaga M. K., Gold L. S. DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ Health Perspect. 1993 Dec;101 (Suppl 5):35–44. doi: 10.1289/ehp.93101s535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bach Peter B., Kattan Michael W., Thornquist Mark D., Kris Mark G., Tate Ramsey C., Barnett Matt J., Hsieh Lillian J., Begg Colin B. Variations in lung cancer risk among smokers. J Natl Cancer Inst. 2003 Mar 19;95(6):470–478. doi: 10.1093/jnci/95.6.470. [DOI] [PubMed] [Google Scholar]
- Bain Chris, Feskanich Diane, Speizer Frank E., Thun Michael, Hertzmark Ellen, Rosner Bernard A., Colditz Graham A. Lung cancer rates in men and women with comparable histories of smoking. J Natl Cancer Inst. 2004 Jun 2;96(11):826–834. doi: 10.1093/jnci/djh143. [DOI] [PubMed] [Google Scholar]
- Ballaz Santiago, Mulshine James L. The potential contributions of chronic inflammation to lung carcinogenesis. Clin Lung Cancer. 2003 Jul;5(1):46–62. doi: 10.3816/CLC.2003.n.021. [DOI] [PubMed] [Google Scholar]
- Barnes P. J., Shapiro S. D., Pauwels R. A. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 2003 Oct;22(4):672–688. doi: 10.1183/09031936.03.00040703. [DOI] [PubMed] [Google Scholar]
- Boffetta Paolo. Epidemiology of environmental and occupational cancer. Oncogene. 2004 Aug 23;23(38):6392–6403. doi: 10.1038/sj.onc.1207715. [DOI] [PubMed] [Google Scholar]
- Bouros Demosthenes, Hatzakis Kostas, Labrakis Haris, Zeibecoglou Kyriaki. Association of malignancy with diseases causing interstitial pulmonary changes. Chest. 2002 Apr;121(4):1278–1289. doi: 10.1378/chest.121.4.1278. [DOI] [PubMed] [Google Scholar]
- Bray F., Sankila R., Ferlay J., Parkin D. M. Estimates of cancer incidence and mortality in Europe in 1995. Eur J Cancer. 2002 Jan;38(1):99–166. doi: 10.1016/s0959-8049(01)00350-1. [DOI] [PubMed] [Google Scholar]
- Cosio M., Ghezzo H., Hogg J. C., Corbin R., Loveland M., Dosman J., Macklem P. T. The relations between structural changes in small airways and pulmonary-function tests. N Engl J Med. 1978 Jun 8;298(23):1277–1281. doi: 10.1056/NEJM197806082982303. [DOI] [PubMed] [Google Scholar]
- Eberly Lynn E., Ockene Judith, Sherwin Roger, Yang Lingfeng, Kuller Lewis, Multiple Risk Factor Intervention Trial Research Group Pulmonary function as a predictor of lung cancer mortality in continuing cigarette smokers and in quitters. Int J Epidemiol. 2003 Aug;32(4):592–599. doi: 10.1093/ije/dyg177. [DOI] [PubMed] [Google Scholar]
- Ezzati Majid, Lopez Alan D. Estimates of global mortality attributable to smoking in 2000. Lancet. 2003 Sep 13;362(9387):847–852. doi: 10.1016/S0140-6736(03)14338-3. [DOI] [PubMed] [Google Scholar]
- Gottschall E. Brigitte. Occupational and environmental thoracic malignancies. J Thorac Imaging. 2002 Jul;17(3):189–197. doi: 10.1097/00005382-200207000-00003. [DOI] [PubMed] [Google Scholar]
- Gross T. J., Hunninghake G. W. Idiopathic pulmonary fibrosis. N Engl J Med. 2001 Aug 16;345(7):517–525. doi: 10.1056/NEJMra003200. [DOI] [PubMed] [Google Scholar]
- Guengerich F. P., Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol. 1991 Jul-Aug;4(4):391–407. doi: 10.1021/tx00022a001. [DOI] [PubMed] [Google Scholar]
- Halpern M. T., Gillespie B. W., Warner K. E. Patterns of absolute risk of lung cancer mortality in former smokers. J Natl Cancer Inst. 1993 Mar 17;85(6):457–464. doi: 10.1093/jnci/85.6.457. [DOI] [PubMed] [Google Scholar]
- Hankinson J. L., Odencrantz J. R., Fedan K. B. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999 Jan;159(1):179–187. doi: 10.1164/ajrccm.159.1.9712108. [DOI] [PubMed] [Google Scholar]
- Hogg James C., Chu Fanny, Utokaparch Soraya, Woods Ryan, Elliott W. Mark, Buzatu Liliana, Cherniack Ruben M., Rogers Robert M., Sciurba Frank C., Coxson Harvey O. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004 Jun 24;350(26):2645–2653. doi: 10.1056/NEJMoa032158. [DOI] [PubMed] [Google Scholar]
- Hole D. J., Watt G. C., Davey-Smith G., Hart C. L., Gillis C. R., Hawthorne V. M. Impaired lung function and mortality risk in men and women: findings from the Renfrew and Paisley prospective population study. BMJ. 1996 Sep 21;313(7059):711–716. doi: 10.1136/bmj.313.7059.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Islam S. S., Schottenfeld D. Declining FEV1 and chronic productive cough in cigarette smokers: a 25-year prospective study of lung cancer incidence in Tecumseh, Michigan. Cancer Epidemiol Biomarkers Prev. 1994 Jun;3(4):289–298. [PubMed] [Google Scholar]
- Jedrychowski W., Becher H., Wahrendorf J., Basa-Cierpialek Z., Gomola K. Effect of tobacco smoking on various histological types of lung cancer. J Cancer Res Clin Oncol. 1992;118(4):276–282. doi: 10.1007/BF01208616. [DOI] [PubMed] [Google Scholar]
- Jemal Ahmedin, Tiwari Ram C., Murray Taylor, Ghafoor Asma, Samuels Alicia, Ward Elizabeth, Feuer Eric J., Thun Michael J., American Cancer Society Cancer statistics, 2004. CA Cancer J Clin. 2004 Jan-Feb;54(1):8–29. doi: 10.3322/canjclin.54.1.8. [DOI] [PubMed] [Google Scholar]
- Khuder S. A. Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer. 2001 Feb-Mar;31(2-3):139–148. doi: 10.1016/s0169-5002(00)00181-1. [DOI] [PubMed] [Google Scholar]
- Kuller L. H., Ockene J., Meilahn E., Svendsen K. H. Relation of forced expiratory volume in one second (FEV1) to lung cancer mortality in the Multiple Risk Factor Intervention Trial (MRFIT). Am J Epidemiol. 1990 Aug;132(2):265–274. doi: 10.1093/oxfordjournals.aje.a115656. [DOI] [PubMed] [Google Scholar]
- Kure E. H., Ryberg D., Hewer A., Phillips D. H., Skaug V., Baera R., Haugen A. p53 mutations in lung tumours: relationship to gender and lung DNA adduct levels. Carcinogenesis. 1996 Oct;17(10):2201–2205. doi: 10.1093/carcin/17.10.2201. [DOI] [PubMed] [Google Scholar]
- Lange P., Nyboe J., Appleyard M., Jensen G., Schnohr P. Ventilatory function and chronic mucus hypersecretion as predictors of death from lung cancer. Am Rev Respir Dis. 1990 Mar;141(3):613–617. doi: 10.1164/ajrccm/141.3.613. [DOI] [PubMed] [Google Scholar]
- Lee H. J., Im J. G., Ahn J. M., Yeon K. M. Lung cancer in patients with idiopathic pulmonary fibrosis: CT findings. J Comput Assist Tomogr. 1996 Nov-Dec;20(6):979–982. doi: 10.1097/00004728-199611000-00020. [DOI] [PubMed] [Google Scholar]
- Mannino David M., Aguayo Samuel M., Petty Thomas L., Redd Stephen C. Low lung function and incident lung cancer in the United States: data From the First National Health and Nutrition Examination Survey follow-up. Arch Intern Med. 2003 Jun 23;163(12):1475–1480. doi: 10.1001/archinte.163.12.1475. [DOI] [PubMed] [Google Scholar]
- McLemore T. L., Adelberg S., Liu M. C., McMahon N. A., Yu S. J., Hubbard W. C., Czerwinski M., Wood T. G., Storeng R., Lubet R. A. Expression of CYP1A1 gene in patients with lung cancer: evidence for cigarette smoke-induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas. J Natl Cancer Inst. 1990 Aug 15;82(16):1333–1339. doi: 10.1093/jnci/82.16.1333. [DOI] [PubMed] [Google Scholar]
- Mollerup S., Ryberg D., Hewer A., Phillips D. H., Haugen A. Sex differences in lung CYP1A1 expression and DNA adduct levels among lung cancer patients. Cancer Res. 1999 Jul 15;59(14):3317–3320. [PubMed] [Google Scholar]
- Nomura A., Stemmermann G. N., Chyou P. H., Marcus E. B., Buist A. S. Prospective study of pulmonary function and lung cancer. Am Rev Respir Dis. 1991 Aug;144(2):307–311. doi: 10.1164/ajrccm/144.2.307. [DOI] [PubMed] [Google Scholar]
- Nordquist Luke T., Simon George R., Cantor Alan, Alberts W. Michael, Bepler Gerold. Improved survival in never-smokers vs current smokers with primary adenocarcinoma of the lung. Chest. 2004 Aug;126(2):347–351. doi: 10.1378/chest.126.2.347. [DOI] [PubMed] [Google Scholar]
- Papi A., Casoni G., Caramori G., Guzzinati I., Boschetto P., Ravenna F., Calia N., Petruzzelli S., Corbetta L., Cavallesco G. COPD increases the risk of squamous histological subtype in smokers who develop non-small cell lung carcinoma. Thorax. 2004 Aug;59(8):679–681. doi: 10.1136/thx.2003.018291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel Jyoti D., Bach Peter B., Kris Mark G. Lung cancer in US women: a contemporary epidemic. JAMA. 2004 Apr 14;291(14):1763–1768. doi: 10.1001/jama.291.14.1763. [DOI] [PubMed] [Google Scholar]
- Peto R., Speizer F. E., Cochrane A. L., Moore F., Fletcher C. M., Tinker C. M., Higgins I. T., Gray R. G., Richards S. M., Gilliland J. The relevance in adults of air-flow obstruction, but not of mucus hypersecretion, to mortality from chronic lung disease. Results from 20 years of prospective observation. Am Rev Respir Dis. 1983 Sep;128(3):491–500. doi: 10.1164/arrd.1983.128.3.491. [DOI] [PubMed] [Google Scholar]
- Risch H. A., Howe G. R., Jain M., Burch J. D., Holowaty E. J., Miller A. B. Are female smokers at higher risk for lung cancer than male smokers? A case-control analysis by histologic type. Am J Epidemiol. 1993 Sep 1;138(5):281–293. doi: 10.1093/oxfordjournals.aje.a116857. [DOI] [PubMed] [Google Scholar]
- Ryberg D., Hewer A., Phillips D. H., Haugen A. Different susceptibility to smoking-induced DNA damage among male and female lung cancer patients. Cancer Res. 1994 Nov 15;54(22):5801–5803. [PubMed] [Google Scholar]
- Skillrud D. M., Offord K. P., Miller R. D. Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann Intern Med. 1986 Oct;105(4):503–507. doi: 10.7326/0003-4819-105-4-503. [DOI] [PubMed] [Google Scholar]
- Tockman M. S., Anthonisen N. R., Wright E. C., Donithan M. G. Airways obstruction and the risk for lung cancer. Ann Intern Med. 1987 Apr;106(4):512–518. doi: 10.7326/0003-4819-106-4-512. [DOI] [PubMed] [Google Scholar]
- Toyooka Shinichi, Tsuda Toshihide, Gazdar Adi F. The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat. 2003 Mar;21(3):229–239. doi: 10.1002/humu.10177. [DOI] [PubMed] [Google Scholar]
- Van den Eeden S. K., Friedman G. D. Forced expiratory volume (1 second) and lung cancer incidence and mortality. Epidemiology. 1992 May;3(3):253–257. doi: 10.1097/00001648-199205000-00011. [DOI] [PubMed] [Google Scholar]
- Vestbo J., Knudsen K. M., Rasmussen F. V. Are respiratory symptoms and chronic airflow limitation really associated with an increased risk of respiratory cancer? Int J Epidemiol. 1991 Jun;20(2):375–378. doi: 10.1093/ije/20.2.375. [DOI] [PubMed] [Google Scholar]
- Wei Q., Cheng L., Amos C. I., Wang L. E., Guo Z., Hong W. K., Spitz M. R. Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk: a molecular epidemiologic study. J Natl Cancer Inst. 2000 Nov 1;92(21):1764–1772. doi: 10.1093/jnci/92.21.1764. [DOI] [PubMed] [Google Scholar]
- Wiles F. J., Hnizdo E. Relevance of airflow obstruction and mucus hypersecretion to mortality. Respir Med. 1991 Jan;85(1):27–35. doi: 10.1016/s0954-6111(06)80207-6. [DOI] [PubMed] [Google Scholar]
- Wodrich W., Volm M. Overexpression of oncoproteins in non-small cell lung carcinomas of smokers. Carcinogenesis. 1993 Jun;14(6):1121–1124. doi: 10.1093/carcin/14.6.1121. [DOI] [PubMed] [Google Scholar]
- Zang E. A., Wynder E. L. Differences in lung cancer risk between men and women: examination of the evidence. J Natl Cancer Inst. 1996 Feb 21;88(3-4):183–192. doi: 10.1093/jnci/88.3-4.183. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.