Skip to main content
Thorax logoLink to Thorax
. 2005 Sep;60(9):761–764. doi: 10.1136/thx.2004.035766

Glucose in bronchial aspirates increases the risk of respiratory MRSA in intubated patients

B Philips 1, J Redman 1, A Brennan 1, D Wood 1, R Holliman 1, D Baines 1, E Baker 1
PMCID: PMC1747508  PMID: 16135681

Abstract

Background: The risk of nosocomial infection is increased in critically ill patients by stress hyperglycaemia. Glucose is not normally detectable in airway secretions but appears as blood glucose levels exceed 6.7–9.7 mmol/l. We hypothesise that the presence of glucose in airway secretions in these patients predisposes to respiratory infection.

Methods: An association between glucose in bronchial aspirates and nosocomial respiratory infection was examined in 98 critically ill patients. Patients were included if they were expected to require ventilation for more than 48 hours. Bronchial aspirates were analysed for glucose and sent twice weekly for microbiological analysis and whenever an infection was suspected.

Results: Glucose was detected in bronchial aspirates of 58 of the 98 patients. These patients were more likely to have pathogenic bacteria than patients without glucose detected in bronchial aspirates (relative risk 2.4 (95% CI 1.5 to 3.8)). Patients with glucose were much more likely to have methicillin resistant Staphylococcus aureus (MRSA) than those without glucose in bronchial aspirates (relative risk 2.1 (95% CI 1.2 to 3.8)). Patients who became colonised or infected with MRSA had more infiltrates on their chest radiograph (p<0.001), an increased C reactive protein level (p<0.05), and a longer stay in the intensive care unit (p<0.01). Length of stay did not determine which patients acquired MRSA.

Conclusion: The results imply a relationship between the presence of glucose in the airway and a risk of colonisation or infection with pathogenic bacteria including MRSA.

Full Text

The Full Text of this article is available as a PDF (84.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker P. M., Boyd C. A., Ramsden C. A., Strang L. B., Walters D. V. Pulmonary glucose transport in the fetal sheep. J Physiol. 1989 Feb;409:15–27. doi: 10.1113/jphysiol.1989.sp017482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauer T. T., Torres A., Ferrer R., Heyer C. M., Schultze-Werninghaus G., Rasche K. Biofilm formation in endotracheal tubes. Association between pneumonia and the persistence of pathogens. Monaldi Arch Chest Dis. 2002 Feb;57(1):84–87. [PubMed] [Google Scholar]
  3. Bonafonte M. A., Solano C., Sesma B., Alvarez M., Montuenga L., García-Ros D., Gamazo C. The relationship between glycogen synthesis, biofilm formation and virulence in salmonella enteritidis. FEMS Microbiol Lett. 2000 Oct 1;191(1):31–36. doi: 10.1111/j.1574-6968.2000.tb09315.x. [DOI] [PubMed] [Google Scholar]
  4. COLLINS F. M., LASCELLES J. The effect of growth conditions on oxidative and dehydrogenase activity in Staphylococcus aureus. J Gen Microbiol. 1962 Nov;29:531–535. doi: 10.1099/00221287-29-3-531. [DOI] [PubMed] [Google Scholar]
  5. Cai Dongsheng, Yuan Minsheng, Frantz Daniel F., Melendez Peter A., Hansen Lone, Lee Jongsoon, Shoelson Steven E. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005 Jan 30;11(2):183–190. doi: 10.1038/nm1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Esposito Katherine, Nappo Francesco, Marfella Raffaele, Giugliano Giovanni, Giugliano Francesco, Ciotola Myriam, Quagliaro Lisa, Ceriello Antonio, Giugliano Dario. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002 Oct 15;106(16):2067–2072. doi: 10.1161/01.cir.0000034509.14906.ae. [DOI] [PubMed] [Google Scholar]
  7. Geerlings Suzanne E., Meiland Ruby, van Lith Emiel C., Brouwer Ellen C., Gaastra Wim, Hoepelman Andy I. M. Adherence of type 1-fimbriated Escherichia coli to uroepithelial cells: more in diabetic women than in control subjects. Diabetes Care. 2002 Aug;25(8):1405–1409. doi: 10.2337/diacare.25.8.1405. [DOI] [PubMed] [Google Scholar]
  8. Gracia E., Fernández A., Conchello P., Laclériga A., Paniagua L., Seral F., Amorena B. Adherence of Staphylococcus aureus slime-producing strain variants to biomaterials used in orthopaedic surgery. Int Orthop. 1997;21(1):46–51. doi: 10.1007/s002640050116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hardy K. J., Hawkey P. M., Gao F., Oppenheim B. A. Methicillin resistant Staphylococcus aureus in the critically ill. Br J Anaesth. 2004 Jan;92(1):121–130. doi: 10.1093/bja/aeh008. [DOI] [PubMed] [Google Scholar]
  10. Kwoun M. O., Ling P. R., Lydon E., Imrich A., Qu Z., Palombo J., Bistrian B. R. Immunologic effects of acute hyperglycemia in nondiabetic rats. JPEN J Parenter Enteral Nutr. 1997 Mar-Apr;21(2):91–95. doi: 10.1177/014860719702100291. [DOI] [PubMed] [Google Scholar]
  11. Li Y., Burne R. A. Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate. Microbiology. 2001 Oct;147(Pt 10):2841–2848. doi: 10.1099/00221287-147-10-2841. [DOI] [PubMed] [Google Scholar]
  12. Lim Yong, Jana Malabendu, Luong Thanh T., Lee Chia Y. Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. J Bacteriol. 2004 Feb;186(3):722–729. doi: 10.1128/JB.186.3.722-729.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moss M., Guidot D. M., Steinberg K. P., Duhon G. F., Treece P., Wolken R., Hudson L. D., Parsons P. E. Diabetic patients have a decreased incidence of acute respiratory distress syndrome. Crit Care Med. 2000 Jul;28(7):2187–2192. doi: 10.1097/00003246-200007000-00001. [DOI] [PubMed] [Google Scholar]
  14. Philips Barbara J., Meguer Jean-Xavier, Redman Jonathan, Baker Emma H. Factors determining the appearance of glucose in upper and lower respiratory tract secretions. Intensive Care Med. 2003 Aug 28;29(12):2204–2210. doi: 10.1007/s00134-003-1961-2. [DOI] [PubMed] [Google Scholar]
  15. Popov D., Simionescu M. Alterations of lung structure in experimental diabetes, and diabetes associated with hyperlipidaemia in hamsters. Eur Respir J. 1997 Aug;10(8):1850–1858. doi: 10.1183/09031936.97.10081850. [DOI] [PubMed] [Google Scholar]
  16. Reading P. C., Allison J., Crouch E. C., Anders E. M. Increased susceptibility of diabetic mice to influenza virus infection: compromise of collectin-mediated host defense of the lung by glucose? J Virol. 1998 Aug;72(8):6884–6887. doi: 10.1128/jvi.72.8.6884-6887.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Regassa L. B., Novick R. P., Betley M. J. Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect Immun. 1992 Aug;60(8):3381–3388. doi: 10.1128/iai.60.8.3381-3388.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shanmugam Narkunaraja, Reddy Marpadga A., Guha Mausumee, Natarajan Rama. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes. 2003 May;52(5):1256–1264. doi: 10.2337/diabetes.52.5.1256. [DOI] [PubMed] [Google Scholar]
  19. Somerville Greg A., Chaussee Michael S., Morgan Carrie I., Fitzgerald J. Ross, Dorward David W., Reitzer Lawrence J., Musser James M. Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival. Infect Immun. 2002 Nov;70(11):6373–6382. doi: 10.1128/IAI.70.11.6373-6382.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Speert D. P., Wong S. Y., Macdonald M., Sargeant R. Modulation of macrophage function for defence of the lung against Pseudomonas aeruginosa. Behring Inst Mitt. 1997 Feb;(98):274–282. [PubMed] [Google Scholar]
  21. Spolarics Z. Endotoxin stimulates gene expression of ROS-eliminating pathways in rat hepatic endothelial and Kupffer cells. Am J Physiol. 1996 Apr;270(4 Pt 1):G660–G666. doi: 10.1152/ajpgi.1996.270.4.G660. [DOI] [PubMed] [Google Scholar]
  22. Vary T. C., Drnevich D., Jurasinski C., Brennan W. A., Jr Mechanisms regulating skeletal muscle glucose metabolism in sepsis. Shock. 1995 Jun;3(6):403–410. [PubMed] [Google Scholar]
  23. Wong S. Y., Guerdoud L. M., Cantin A., Speert D. P. Glucose stimulates phagocytosis of unopsonized Pseudomonas aeruginosa by cultivated human alveolar macrophages. Infect Immun. 1999 Jan;67(1):16–21. doi: 10.1128/iai.67.1.16-21.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wood David M., Brennan Amanda L., Philips Barbara J., Baker Emma H. Effect of hyperglycaemia on glucose concentration of human nasal secretions. Clin Sci (Lond) 2004 May;106(5):527–533. doi: 10.1042/CS20030333. [DOI] [PubMed] [Google Scholar]
  25. van den Berghe G., Wouters P., Weekers F., Verwaest C., Bruyninckx F., Schetz M., Vlasselaers D., Ferdinande P., Lauwers P., Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001 Nov 8;345(19):1359–1367. doi: 10.1056/NEJMoa011300. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES