Skip to main content
Tobacco Control logoLink to Tobacco Control
. 2005 Dec;14(6):396–404. doi: 10.1136/tc.2005.011288

Philip Morris toxicological experiments with fresh sidestream smoke: more toxic than mainstream smoke

S Schick 1, S Glantz 1
PMCID: PMC1748121  PMID: 16319363

Abstract

Background: Exposure to secondhand smoke causes lung cancer; however, there are little data in the open literature on the in vivo toxicology of fresh sidestream cigarette smoke to guide the debate about smoke-free workplaces and public places.

Objective: To investigate the unpublished in vivo research on sidestream cigarette smoke done by Philip Morris Tobacco Company during the 1980s at its Institut für Biologische Forschung (INBIFO).

Methods: Analysis of internal tobacco industry documents now available at the University of California San Francisco Legacy Tobacco Documents Library and other websites.

Results: Inhaled fresh sidestream cigarette smoke is approximately four times more toxic per gram total particulate matter (TPM) than mainstream cigarette smoke. Sidestream condensate is approximately three times more toxic per gram and two to six times more tumourigenic per gram than mainstream condensate by dermal application. The gas/vapour phase of sidestream smoke is responsible for most of the sensory irritation and respiratory tract epithelium damage. Fresh sidestream smoke inhibits normal weight gain in developing animals. In a 21day exposure, fresh sidestream smoke can cause damage to the respiratory epithelium at concentrations of 2 µg/l TPM. Damage to the respiratory epithelium increases with longer exposures. The toxicity of whole sidestream smoke is higher than the sum of the toxicities of its major constituents.

Conclusion: Fresh sidestream smoke at concentrations commonly encountered indoors is well above a 2 µg/m3 reference concentration (the level at which acute effects are unlikely to occur), calculated from the results of the INBIFO studies, that defines acute toxicity to humans. Smoke-free public places and workplaces are the only practical way to protect the public health from the toxins in sidestream smoke.

Full Text

The Full Text of this article is available as a PDF (149.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alarie Y. Sensory irritation of the upper airways by airborne chemicals. Toxicol Appl Pharmacol. 1973 Feb;24(2):279–297. doi: 10.1016/0041-008x(73)90148-8. [DOI] [PubMed] [Google Scholar]
  2. Barnes D. E., Bero L. A. Scientific quality of original research articles on environmental tobacco smoke. Tob Control. 1997 Spring;6(1):19–26. doi: 10.1136/tc.6.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnes D. E., Bero L. A. Why review articles on the health effects of passive smoking reach different conclusions. JAMA. 1998 May 20;279(19):1566–1570. doi: 10.1001/jama.279.19.1566. [DOI] [PubMed] [Google Scholar]
  4. Bero L. A., Glantz S. A., Rennie D. Publication bias and public health policy on environmental tobacco smoke. JAMA. 1994 Jul 13;272(2):133–136. [PubMed] [Google Scholar]
  5. Bero Lisa A. Tobacco industry manipulation of research. Public Health Rep. 2005 Mar-Apr;120(2):200–208. doi: 10.1177/003335490512000215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chortyk O. T., Chamberlain W. J. A study on the mutagenicity of tobacco smoke from low-tar cigarettes. Arch Environ Health. 1990 Jul-Aug;45(4):237–244. doi: 10.1080/00039896.1990.9940808. [DOI] [PubMed] [Google Scholar]
  7. Enstrom James E., Kabat Geoffrey C. Environmental tobacco smoke and tobacco related mortality in a prospective study of Californians, 1960-98. BMJ. 2003 May 17;326(7398):1057–1057. doi: 10.1136/bmj.326.7398.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fowles J., Dybing E. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob Control. 2003 Dec;12(4):424–430. doi: 10.1136/tc.12.4.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haley N. J., Adams J. D., Alzofon J., Hoffmann D. Uptake of sidestream smoke by Syrian golden hamsters. Toxicol Lett. 1987 Jan;35(1):83–88. doi: 10.1016/0378-4274(87)90089-0. [DOI] [PubMed] [Google Scholar]
  10. Haussmann H. J., Anskeit E., Becker D., Kuhl P., Stinn W., Teredesai A., Voncken P., Walk R. A. Comparison of fresh and room-aged cigarette sidestream smoke in a subchronic inhalation study on rats. Toxicol Sci. 1998 Jan;41(1):100–116. doi: 10.1093/toxsci/41.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kelly J. T., Kimbell J. S., Asgharian B. Deposition of fine and coarse aerosols in a rat nasal mold. Inhal Toxicol. 2001 Jul;13(7):577–588. doi: 10.1080/089583701300164249. [DOI] [PubMed] [Google Scholar]
  12. Kennedy G. E., Bero L. A. Print media coverage of research on passive smoking. Tob Control. 1999 Autumn;8(3):254–260. doi: 10.1136/tc.8.3.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ling P. I., Löfroth G., Lewtas J. Mutagenic determination of passive smoking. Toxicol Lett. 1987 Jan;35(1):147–151. doi: 10.1016/0378-4274(87)90100-7. [DOI] [PubMed] [Google Scholar]
  14. Löfroth G., Lazaridis G. Environmental tobacco smoke: comparative characterization by mutagenicity assays of sidestream and mainstream cigarette smoke. Environ Mutagen. 1986;8(5):693–704. doi: 10.1002/em.2860080505. [DOI] [PubMed] [Google Scholar]
  15. Malone R. E., Balbach E. D. Tobacco industry documents: treasure trove or quagmire? Tob Control. 2000 Sep;9(3):334–338. doi: 10.1136/tc.9.3.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Melkonian Goar, Cheung Lucia, Marr Rebecca, Tong Cathy, Talbot P. Mainstream and sidestream cigarette smoke inhibit growth and angiogenesis in the day 5 chick chorioallantoic membrane. Toxicol Sci. 2002 Jul;68(1):237–248. doi: 10.1093/toxsci/68.1.237. [DOI] [PubMed] [Google Scholar]
  17. Mohtashamipur E., Mohtashamipur A., Germann P. G., Ernst H., Norpoth K., Mohr U. Comparative carcinogenicity of cigarette mainstream and sidestream smoke condensates on the mouse skin. J Cancer Res Clin Oncol. 1990;116(6):604–608. doi: 10.1007/BF01637081. [DOI] [PubMed] [Google Scholar]
  18. Mohtashamipur E., Steinforth T., Norpoth K. Comparative bone marrow clastogenicity of cigarette sidestream, mainstream and recombined smoke condensates in mice. Mutagenesis. 1988 Sep;3(5):419–422. doi: 10.1093/mutage/3.5.419. [DOI] [PubMed] [Google Scholar]
  19. Neilsen K., Glantz S. A. A tobacco industry study of airline cabin air quality: dropping inconvenient findings. Tob Control. 2004 Mar;13 (Suppl 1):i20–i29. doi: 10.1136/tc.2003.004721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schlage W. K., Bülles H., Friedrichs D., Kuhn M., Teredesai A., Terpstra P. Tobacco smoke-induced alterations of cytokeratin expression in the rat nasal activity cavity following chronic inhalation of room-aged sidestream smoke. Toxicol Lett. 1998 Aug;96-97:309–318. doi: 10.1016/s0378-4274(98)00087-3. [DOI] [PubMed] [Google Scholar]
  21. Stabbert R., Schepers G., Stinn W. S., Haussmann H. J. Hemoglobin adducts in rats chronically exposed to room-aged cigarette sidestream smoke and diesel engine exhaust. Adv Exp Med Biol. 2001;500:153–156. doi: 10.1007/978-1-4615-0667-6_20. [DOI] [PubMed] [Google Scholar]
  22. Witschi H., Espiritu I., Maronpot R. R., Pinkerton K. E., Jones A. D. The carcinogenic potential of the gas phase of environmental tobacco smoke. Carcinogenesis. 1997 Nov;18(11):2035–2042. doi: 10.1093/carcin/18.11.2035. [DOI] [PubMed] [Google Scholar]

Articles from Tobacco Control are provided here courtesy of BMJ Publishing Group

RESOURCES