Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1987 Oct;31(10):1542–1548. doi: 10.1128/aac.31.10.1542

Molecular target of the antileishmanial action of sinefungin.

L L Nolan 1
PMCID: PMC174986  PMID: 3124733

Abstract

Sinefungin, a natural nucleoside isolated from cultures of Streptomyces incarnatus and S. griseolus, is structurally related to S-adenosylhomocysteine and S-adenosylmethionine. Sinefungin has been shown to inhibit the development of various fungi and viruses, but its major attraction to date resides in its potent antiparasitic activity. This compound has been reported to display antiparasitic activity against malarial, trypanosomal, and leishmanial species. Very little is known about the antiparasitic mode of action of sinefungin. We found that S-adenosylmethionine was capable of reversing the inhibitory growth effects of sinefungin in Leishmania mexicana and that dATP was capable of reversing inhibitory effects of the drug on DNA polymerase activity when pyrophosphate release was measured. However, when incorporation of [3H]dTTP was used to measure DNA polymerase activity, no inhibition could be observed. Inhibition of DNA polymerase activity by sinefungin occurred only during the initial stages of purification of this enzyme, and inhibition by aphidicolin, a known DNA polymerase inhibitor, paralleled the inhibition by sinefungin. Neither sinefungin nor aphidicolin inhibited partially purified DNA polymerase. S-Adenosylmethionine synthetase was partially purified, and sinefungin, at levels active in vitro, had no significant effect. Sinefungin was significantly suppressive against both L. donovani and L. braziliensis panamensis infections in hamsters when compared with meglumine antimonate (Glucantime).

Full text

PDF
1542

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Mccann J., Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res. 1975 Dec;31(6):347–364. doi: 10.1016/0165-1161(75)90046-1. [DOI] [PubMed] [Google Scholar]
  2. Bachrach U., Schnur L. F., El-On J., Greenblatt C. L., Pearlman E., Robert-Gero M., Lederer E. Inhibitory activity of sinefungin and SIBA (5'-deoxy-5'-S-isobutylthio-adenosine) on the growth of promastigotes and amastigotes of different species of Leishmania. FEBS Lett. 1980 Dec 1;121(2):287–291. doi: 10.1016/0014-5793(80)80364-4. [DOI] [PubMed] [Google Scholar]
  3. Chiang P. K., Cantoni G. L. Activation of methionine for transmethylation. Purification of the S-adenosylmethionine synthetase of bakers' yeast and its separation into two forms. J Biol Chem. 1977 Jul 10;252(13):4506–4513. [PubMed] [Google Scholar]
  4. Drahovsky D., Boehm T. L. Enzymatic DNA methylation in higher eukaryotes. Int J Biochem. 1980;12(4):523–528. doi: 10.1016/0020-711x(80)90002-6. [DOI] [PubMed] [Google Scholar]
  5. Dube D. K., Mpimbaza G., Allison A. C., Lederer E., Rovis L. Antitrypanosomal activity of sinefungin. Am J Trop Med Hyg. 1983 Jan;32(1):31–33. doi: 10.4269/ajtmh.1983.32.31. [DOI] [PubMed] [Google Scholar]
  6. Dube D. K., Williams R. O., Seal G., Williams S. C. Detection and characterization of DNA polymerase from Trypanosoma brucei. Biochim Biophys Acta. 1979 Jan 26;561(1):10–16. doi: 10.1016/0005-2787(79)90485-4. [DOI] [PubMed] [Google Scholar]
  7. Ferrante A., Ljungström I., Huldt G., Lederer E. Amoebicidal activity of the antifungal antibiotic sinefungin against Entamoeba histolytica. Trans R Soc Trop Med Hyg. 1984;78(6):837–838. doi: 10.1016/0035-9203(84)90039-7. [DOI] [PubMed] [Google Scholar]
  8. Fuller R. W., Nagarajan R. Inhibition of methyltransferases by some new analogs of S-adenosylhomocysteine. Biochem Pharmacol. 1978;27(15):1981–1983. doi: 10.1016/0006-2952(78)90018-7. [DOI] [PubMed] [Google Scholar]
  9. Gordee R. S., Butler T. F. A9145, a new adenine-containing antifungal antibiotic. II. Biological activity. J Antibiot (Tokyo) 1973 Aug;26(8):466–470. doi: 10.7164/antibiotics.26.466. [DOI] [PubMed] [Google Scholar]
  10. Hamil R. L., Hoehn M. M. A9145, a new adenine-containing antifungal antibiotic. I. Discovery and isolation. J Antibiot (Tokyo) 1973 Aug;26(8):463–465. doi: 10.7164/antibiotics.26.463. [DOI] [PubMed] [Google Scholar]
  11. Hoffman J. L., Kunz G. L. Differential activation of rat liver methionine adenosyltransferase isozymes by dimethylsulfoxide. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1231–1236. doi: 10.1016/s0006-291x(77)80111-3. [DOI] [PubMed] [Google Scholar]
  12. Holmes A. M., Cheriathundam E., Kalinski A., Chang L. M. Isolation and partial characterization of DNA polymerases from Crithidia fasciculata. Mol Biochem Parasitol. 1984 Feb;10(2):195–205. doi: 10.1016/0166-6851(84)90007-0. [DOI] [PubMed] [Google Scholar]
  13. Ikegami S., Taguchi T., Ohashi M., Oguro M., Nagano H., Mano Y. Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-alpha. Nature. 1978 Oct 5;275(5679):458–460. doi: 10.1038/275458a0. [DOI] [PubMed] [Google Scholar]
  14. Li A. W., Singer R. A., Johnston G. C. Effects of sinefungin on rRNA production and methylation in the yeast Saccharomyces cerevisiae. Arch Biochem Biophys. 1985 Aug 1;240(2):613–620. doi: 10.1016/0003-9861(85)90068-2. [DOI] [PubMed] [Google Scholar]
  15. Lowe P. A., Hager D. A., Burgess R. R. Purification and properties of the sigma subunit of Escherichia coli DNA-dependent RNA polymerase. Biochemistry. 1979 Apr 3;18(7):1344–1352. doi: 10.1021/bi00574a034. [DOI] [PubMed] [Google Scholar]
  16. MUDD S. H. Activation of methionine for transmethylation. VI. Enzyme-bound tripolyphosphate as an intermediate in the reaction catalyzed by the methionine-activating enzyme of Baker's yeast. J Biol Chem. 1963 Jun;238:2156–2163. [PubMed] [Google Scholar]
  17. Neal R. A., Croft S. L., Nelson D. J. Anti-leishmanial effect of allopurinol ribonucleoside and the related compounds, allopurinol, thiopurinol, thiopurinol ribonucleoside, and of formycin B, sinefungin and the lepidine WR6026. Trans R Soc Trop Med Hyg. 1985;79(1):122–128. doi: 10.1016/0035-9203(85)90255-x. [DOI] [PubMed] [Google Scholar]
  18. Paolantonacci P., Lawrence F., Lederer F., Robert-Gero M. Protein methylation and protein methylases in Leishmania donovani and Leishmania tropica promastigotes. Mol Biochem Parasitol. 1986 Oct;21(1):47–54. doi: 10.1016/0166-6851(86)90078-2. [DOI] [PubMed] [Google Scholar]
  19. Paolantonacci P., Lawrence F., Robert-Géro M. Differential effect of sinefungin and its analogs on the multiplication of three Leishmania species. Antimicrob Agents Chemother. 1985 Oct;28(4):528–531. doi: 10.1128/aac.28.4.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pugh C. S., Borchardt R. T., Stone H. O. Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2'-)-methyltransferase, and viral multiplication. J Biol Chem. 1978 Jun 25;253(12):4075–4077. [PubMed] [Google Scholar]
  21. Solari A., Tharaud D., Repetto Y., Aldunate J., Morello A., Litvak S. In vitro and in vivo studies of Trypanosoma cruzi DNA polymerase. Biochem Int. 1983 Aug;7(2):147–157. [PubMed] [Google Scholar]
  22. Steiger R. F., Steiger E. Cultivation of Leishmania donovani and Leishmania braziliensis in defined media: nutritional requirements. J Protozool. 1977 Aug;24(3):437–441. doi: 10.1111/j.1550-7408.1977.tb04771.x. [DOI] [PubMed] [Google Scholar]
  23. Trager W., Tershakovec M., Chiang P. K., Cantoni G. L. Plasmodium falciparum: antimalarial activity in culture of sinefungin and other methylation inhibitors. Exp Parasitol. 1980 Aug;50(1):83–89. doi: 10.1016/0014-4894(80)90010-7. [DOI] [PubMed] [Google Scholar]
  24. Vedel M., Lawrence F., Robert-Gero M., Lederer E. The antifungal antibiotic sinefungin as a very active inhibitor of methyltransferases and of the transformation of chick embryo fibroblasts by Rous sarcoma virus. Biochem Biophys Res Commun. 1978 Nov 14;85(1):371–376. doi: 10.1016/s0006-291x(78)80052-7. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES