Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Mar;65(3):897–902. doi: 10.1128/iai.65.3.897-902.1997

Vitronectin-binding staphylococci enhance surface-associated complement activation.

F Lundberg 1, T Lea 1, A Ljungh 1
PMCID: PMC175066  PMID: 9038294

Abstract

Coagulase-negative staphylococci are well recognized in medical device-associated infections. Complement activation is known to occur at the biomaterial surface, resulting in unspecific inflammation around the biomaterial. The human serum protein vitronectin (Vn), a potent inhibitor of complement activation by formation of an inactive terminal complement complex, adsorbs to biomaterial surfaces in contact with blood. In this report, we discuss the possibility that surface-immobilized Vn inhibits complement activation and the effect of Vn-binding staphylococci on complement activation on surfaces precoated with Vn. The extent of complement activation was measured with a rabbit anti-human C3c antibody and a mouse anti-human C9 antibody, raised against the neoepitope of C9. Our data show that Vn immobilized on a biomaterial surface retains its ability to inhibit complement activation. The additive complement activation-inhibitory effect of Vn on a heparinized surface is very small. In the presence of Vn-binding strain, Staphylococcus hemolyticus SM131, complement activation on a surface precoated with Vn occurred as it did in the absence of Vn precoating. For S. epidermidis 3380, which does not express binding of Vn, complement activation on a Vn-precoated surface was significantly decreased. The results could be repeated on heparinized surfaces. These data suggest that Vn adsorbed to a biomaterial surface may serve to protect against surface-associated complement activation. Furthermore, Vn-binding staphylococcal cells may enhance surface-associated complement activation by blocking the inhibitory effect of preadsorbed Vn.

Full Text

The Full Text of this article is available as a PDF (101.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbucci R., Magnani A. Conformation of human plasma proteins at polymer surfaces: the effectiveness of surface heparinization. Biomaterials. 1994 Oct;15(12):955–962. doi: 10.1016/0142-9612(94)90075-2. [DOI] [PubMed] [Google Scholar]
  2. Barnes D. W., Reing J. E., Amos B. Heparin-binding properties of human serum spreading factor. J Biol Chem. 1985 Aug 5;260(16):9117–9122. [PubMed] [Google Scholar]
  3. Becherer J. D., Alsenz J., Servis C., Myones B. L., Lambris J. D. Cell surface proteins reacting with activated complement components. Complement Inflamm. 1989;6(3):142–165. doi: 10.1159/000463091. [DOI] [PubMed] [Google Scholar]
  4. Clarke D. E., Raffin T. A. Infectious complications of indwelling long-term central venous catheters. Chest. 1990 Apr;97(4):966–972. doi: 10.1378/chest.97.4.966. [DOI] [PubMed] [Google Scholar]
  5. Edens R. E., Linhardt R. J., Bell C. S., Weiler J. M. Heparin and derivatized heparin inhibit zymosan and cobra venom factor activation of complement in serum. Immunopharmacology. 1994 Mar-Apr;27(2):145–153. doi: 10.1016/0162-3109(94)90049-3. [DOI] [PubMed] [Google Scholar]
  6. Fearon D. T., Wong W. W. Complement ligand-receptor interactions that mediate biological responses. Annu Rev Immunol. 1983;1:243–271. doi: 10.1146/annurev.iy.01.040183.001331. [DOI] [PubMed] [Google Scholar]
  7. Gebb C., Hayman E. G., Engvall E., Ruoslahti E. Interaction of vitronectin with collagen. J Biol Chem. 1986 Dec 15;261(35):16698–16703. [PubMed] [Google Scholar]
  8. Giese M. J., Mondino B. J., Glasgow B. J., Sumner H. L., Adamu S. A., Halabi H. P., Chou H. J. Complement system and host defense against staphylococcal endophthalmitis. Invest Ophthalmol Vis Sci. 1994 Mar;35(3):1026–1032. [PubMed] [Google Scholar]
  9. Hayashi M., Akama T., Kono I., Kashiwagi H. Activation of vitronectin (serum spreading factor) binding of heparin by denaturing agents. J Biochem. 1985 Oct;98(4):1135–1138. doi: 10.1093/oxfordjournals.jbchem.a135363. [DOI] [PubMed] [Google Scholar]
  10. Hayman E. G., Pierschbacher M. D., Ohgren Y., Ruoslahti E. Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4003–4007. doi: 10.1073/pnas.80.13.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kanse S. M., Kost C., Wilhelm O. G., Andreasen P. A., Preissner K. T. The urokinase receptor is a major vitronectin-binding protein on endothelial cells. Exp Cell Res. 1996 May 1;224(2):344–353. doi: 10.1006/excr.1996.0144. [DOI] [PubMed] [Google Scholar]
  12. Meri S., Pangburn M. K. Discrimination between activators and nonactivators of the alternative pathway of complement: regulation via a sialic acid/polyanion binding site on factor H. Proc Natl Acad Sci U S A. 1990 May;87(10):3982–3986. doi: 10.1073/pnas.87.10.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mollnes T. E., Riesenfeld J., Garred P., Nordström E., Høgåsen K., Fosse E., Götze O., Harboe M. A new model for evaluation of biocompatibility: combined determination of neoepitopes in blood and on artificial surfaces demonstrates reduced complement activation by immobilization of heparin. Artif Organs. 1995 Sep;19(9):909–917. doi: 10.1111/j.1525-1594.1995.tb02450.x. [DOI] [PubMed] [Google Scholar]
  14. Mollnes T. E., Videm V., Riesenfeld J., Garred P., Svennevig J. L., Fosse E., Hogasen K., Harboe M. Complement activation and bioincompatibility. The terminal complement complex for evaluation and surface modification with heparin for improvement of biomaterials. Clin Exp Immunol. 1991 Oct;86 (Suppl 1):21–26. [PMC free article] [PubMed] [Google Scholar]
  15. Mondino B. J., Nagata S., Glovsky M. M. Activation of the alternative complement pathway by intraocular lenses. Invest Ophthalmol Vis Sci. 1985 Jun;26(6):905–908. [PubMed] [Google Scholar]
  16. Niculescu F., Rus H. G., Poruţiu D., Ghiurca V., Vlaicu R. Immunoelectron-microscopic localization of S-protein/vitronectin in human atherosclerotic wall. Atherosclerosis. 1989 Aug;78(2-3):197–203. doi: 10.1016/0021-9150(89)90223-2. [DOI] [PubMed] [Google Scholar]
  17. Nilsson Ekdahl K., Nilsson B., Pekna M., Nilsson U. R. Generation of iC3 at the interface between blood and gas. Scand J Immunol. 1992 Jan;35(1):85–91. doi: 10.1111/j.1365-3083.1992.tb02837.x. [DOI] [PubMed] [Google Scholar]
  18. Nilsson U. R., Storm K. E., Elwing H., Nilsson B. Conformational epitopes of C3 reflecting its mode of binding to an artificial polymer surface. Mol Immunol. 1993 Feb;30(3):211–219. doi: 10.1016/0161-5890(93)90050-l. [DOI] [PubMed] [Google Scholar]
  19. Nydegger U. E., Rieben R., Aeschbacher B. Biocompatibility of apheresis harness. Transfus Sci. 1990;11(1):43–54. doi: 10.1016/0955-3886(90)90006-5. [DOI] [PubMed] [Google Scholar]
  20. Paulsson M., Gouda I., Larm O., Ljungh A. Adherence of coagulase-negative staphylococci to heparin and other glycosaminoglycans immobilized on polymer surfaces. J Biomed Mater Res. 1994 Mar;28(3):311–317. doi: 10.1002/jbm.820280305. [DOI] [PubMed] [Google Scholar]
  21. Paulsson M., Liang O. D., Ascencio F., Wadström T. Vitronectin-binding surface proteins of Staphylococcus aureus. Zentralbl Bakteriol. 1992 Jun;277(1):54–64. doi: 10.1016/s0934-8840(11)80871-6. [DOI] [PubMed] [Google Scholar]
  22. Paulsson M., Ljungh A., Wadström T. Rapid identification of fibronectin, vitronectin, laminin, and collagen cell surface binding proteins on coagulase-negative staphylococci by particle agglutination assays. J Clin Microbiol. 1992 Aug;30(8):2006–2012. doi: 10.1128/jcm.30.8.2006-2012.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pekna M., Larsson R., Formgren B., Nilsson U. R., Nilsson B. Complement activation by polymethyl methacrylate minimized by end-point heparin attachment. Biomaterials. 1993 Feb;14(3):189–192. doi: 10.1016/0142-9612(93)90022-t. [DOI] [PubMed] [Google Scholar]
  24. Pekna M., Nilsson L., Nilsson-Ekdahl K., Nilsson U. R., Nilsson B. Evidence for iC3 generation during cardiopulmonary bypass as the result of blood-gas interaction. Clin Exp Immunol. 1993 Mar;91(3):404–409. doi: 10.1111/j.1365-2249.1993.tb05916.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Podack E. R., Preissner K. T., Müller-Eberhard H. J. Inhibition of C9 polymerization within the SC5b-9 complex of complement by S-protein. Acta Pathol Microbiol Immunol Scand Suppl. 1984;284:89–96. [PubMed] [Google Scholar]
  26. Preissner K. T., Müller-Berghaus G. S protein modulates the heparin-catalyzed inhibition of thrombin by antithrombin III. Evidence for a direct interaction of S protein with heparin. Eur J Biochem. 1986 May 2;156(3):645–650. doi: 10.1111/j.1432-1033.1986.tb09626.x. [DOI] [PubMed] [Google Scholar]
  27. Preissner K. T., Podack E. R., Müller-Eberhard H. J. The membrane attack complex of complement: relation of C7 to the metastable membrane binding site of the intermediate complex C5b-7. J Immunol. 1985 Jul;135(1):445–451. [PubMed] [Google Scholar]
  28. Preissner K. T. Structure and biological role of vitronectin. Annu Rev Cell Biol. 1991;7:275–310. doi: 10.1146/annurev.cb.07.110191.001423. [DOI] [PubMed] [Google Scholar]
  29. Rapoza R. J., Horbett T. A. Postadsorptive transitions in fibrinogen: influence of polymer properties. J Biomed Mater Res. 1990 Oct;24(10):1263–1287. doi: 10.1002/jbm.820241002. [DOI] [PubMed] [Google Scholar]
  30. Rozalska B., Ljungh A. Biomaterial-associated staphylococcal peritoneal infections in a neutropaenic mouse model. FEMS Immunol Med Microbiol. 1995 Jul;11(4):307–319. doi: 10.1111/j.1574-695X.1995.tb00161.x. [DOI] [PubMed] [Google Scholar]
  31. Salama A., Hugo F., Heinrich D., Höge R., Müller R., Kiefel V., Mueller-Eckhardt C., Bhakdi S. Deposition of terminal C5b-9 complement complexes on erythrocytes and leukocytes during cardiopulmonary bypass. N Engl J Med. 1988 Feb 18;318(7):408–414. doi: 10.1056/NEJM198802183180704. [DOI] [PubMed] [Google Scholar]
  32. Tschopp J., Masson D., Schäfer S., Peitsch M., Preissner K. T. The heparin binding domain of S-protein/vitronectin binds to complement components C7, C8, and C9 and perforin from cytolytic T-cells and inhibits their lytic activities. Biochemistry. 1988 May 31;27(11):4103–4109. doi: 10.1021/bi00411a029. [DOI] [PubMed] [Google Scholar]
  33. Van Wamel W. J., Fluit A. C., Wadström T., van Dijk H., Verhoef J., Vandenbroucke-Grauls C. M. Phenotypic characterization of epidemic versus sporadic strains of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1995 Jul;33(7):1769–1774. doi: 10.1128/jcm.33.7.1769-1774.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yatohgo T., Izumi M., Kashiwagi H., Hayashi M. Novel purification of vitronectin from human plasma by heparin affinity chromatography. Cell Struct Funct. 1988 Aug;13(4):281–292. doi: 10.1247/csf.13.281. [DOI] [PubMed] [Google Scholar]
  35. Yu J., Montelius M. N., Paulsson M., Gouda I., Larm O., Montelius L., Ljungh A. Adhesion of coagulase-negative staphylococci and adsorption of plasma proteins to heparinized polymer surfaces. Biomaterials. 1994 Aug;15(10):805–814. doi: 10.1016/0142-9612(94)90035-3. [DOI] [PubMed] [Google Scholar]
  36. Zhuang P., Li H., Williams J. G., Wagner N. V., Seiffert D., Peterson C. B. Characterization of the denaturation and renaturation of human plasma vitronectin. II. Investigation into the mechanism of formation of multimers. J Biol Chem. 1996 Jun 14;271(24):14333–14343. doi: 10.1074/jbc.271.24.14333. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES