Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Mar;65(3):951–956. doi: 10.1128/iai.65.3.951-956.1997

Cross-reactive cytotoxic T-lymphocyte-mediated lysis of Chlamydia trachomatis- and Chlamydia psittaci-infected cells.

P R Beatty 1, S J Rasmussen 1, R S Stephens 1
PMCID: PMC175074  PMID: 9038302

Abstract

Cells infected with Chlamydia trachomatis are lysed by CD8+ T cells in vitro. The ability of C. trachomatis-elicited spleen cells to lyse target cells infected with other chlamydial strains was determined by measuring lysis by immune spleen cells of targets infected with three strains of C. trachomatis and two strains of C. psittaci. C. trachomatis (lymphogranuloma venereum [LGV])-elicited immune murine spleen cells lysed target cells infected with other C. trachomatis serovars, although with lower sensitivity than they lysed LGV-infected target cells. Additionally, target cells infected with C. psittaci were lysed by C. trachomatis-elicited immune spleen cells. Notably, C. psittaci-infected cells were lysed with greater efficiency than were cells infected with the C. trachomatis strain used to elicit the immune spleen cells. The lysis of C. psittaci-infected cells was characterized further and could be only partially accounted for by CD8+ T-cell-mediated lysis, the remaining lysis being due to an antigen-nonspecific component. These results indicate that mechanisms of immunologically mediated lysis differ between C. trachomatis- and C. psittaci-infected cells. This has important implications for the interpretation of results obtained with C. psittaci models of infection and immune resolution, particularly as they may be extrapolated to C. trachomatis.

Full Text

The Full Text of this article is available as a PDF (90.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander J. J. Effect of infection with the meningopneumonitis agent on deoxyribonucleic acid and protein synthesis by its L-cell host. J Bacteriol. 1969 Feb;97(2):653–657. doi: 10.1128/jb.97.2.653-657.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beatty P. R., Stephens R. S. CD8+ T lymphocyte-mediated lysis of Chlamydia-infected L cells using an endogenous antigen pathway. J Immunol. 1994 Nov 15;153(10):4588–4595. [PubMed] [Google Scholar]
  3. Brade H., Brade L., Nano F. E. Chemical and serological investigations on the genus-specific lipopolysaccharide epitope of Chlamydia. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2508–2512. doi: 10.1073/pnas.84.8.2508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buzoni-Gatel D., Guilloteau L., Bernard F., Bernard S., Chardès T., Rocca A. Protection against Chlamydia psittaci in mice conferred by Lyt-2+ T cells. Immunology. 1992 Oct;77(2):284–288. [PMC free article] [PubMed] [Google Scholar]
  5. Byrne G. I., Grubbs B., Marshall T. J., Schachter J., Williams D. M. Gamma interferon-mediated cytotoxicity related to murine Chlamydia trachomatis infection. Infect Immun. 1988 Aug;56(8):2023–2027. doi: 10.1128/iai.56.8.2023-2027.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Igietseme J. U., Magee D. M., Williams D. M., Rank R. G. Role for CD8+ T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Infect Immun. 1994 Nov;62(11):5195–5197. doi: 10.1128/iai.62.11.5195-5197.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaufmann S. H. CD8+ T lymphocytes in intracellular microbial infections. Immunol Today. 1988 Jun;9(6):168–174. doi: 10.1016/0167-5699(88)91292-3. [DOI] [PubMed] [Google Scholar]
  8. Kingsbury D. T., Weiss E. Lack of deoxyribonucleic acid homology between species of the genus Chlamydia. J Bacteriol. 1968 Oct;96(4):1421–1423. doi: 10.1128/jb.96.4.1421-1423.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lammert J. K. Cytotoxic cells induced after Chlamydia psittaci infection in mice. Infect Immun. 1982 Mar;35(3):1011–1017. doi: 10.1128/iai.35.3.1011-1017.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Magee D. M., Williams D. M., Smith J. G., Bleicker C. A., Grubbs B. G., Schachter J., Rank R. G. Role of CD8 T cells in primary Chlamydia infection. Infect Immun. 1995 Feb;63(2):516–521. doi: 10.1128/iai.63.2.516-521.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mondesire R. R., Maclean I. W., Shewen P. E., Winston S. E. Identification of genus-specific epitopes on the outer membrane complexes of Chlamydia trachomatis and Chlamydia psittaci immunotypes 1 and 2. Infect Immun. 1989 Sep;57(9):2914–2918. doi: 10.1128/iai.57.9.2914-2918.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moulder J. W., Hatch T. P., Byrne G. I., Kellogg K. R. Immediate toxicity of high multiplicities of Chlamydia psittaci for mouse fibroblasts (L cells). Infect Immun. 1976 Jul;14(1):277–289. doi: 10.1128/iai.14.1.277-289.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moulder J. W. Interaction of chlamydiae and host cells in vitro. Microbiol Rev. 1991 Mar;55(1):143–190. doi: 10.1128/mr.55.1.143-190.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nagata S., Golstein P. The Fas death factor. Science. 1995 Mar 10;267(5203):1449–1456. doi: 10.1126/science.7533326. [DOI] [PubMed] [Google Scholar]
  15. Pavia C. S., Schachter J. Failure to detect cell-mediated cytotoxicity against Chlamydia trachomatis-infected cells. Infect Immun. 1983 Mar;39(3):1271–1274. doi: 10.1128/iai.39.3.1271-1274.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rockey D. D., Heinzen R. A., Hackstadt T. Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells. Mol Microbiol. 1995 Feb;15(4):617–626. doi: 10.1111/j.1365-2958.1995.tb02371.x. [DOI] [PubMed] [Google Scholar]
  17. Starnbach M. N., Bevan M. J., Lampe M. F. Murine cytotoxic T lymphocytes induced following Chlamydia trachomatis intraperitoneal or genital tract infection respond to cells infected with multiple serovars. Infect Immun. 1995 Sep;63(9):3527–3530. doi: 10.1128/iai.63.9.3527-3530.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Starnbach M. N., Bevan M. J., Lampe M. F. Protective cytotoxic T lymphocytes are induced during murine infection with Chlamydia trachomatis. J Immunol. 1994 Dec 1;153(11):5183–5189. [PubMed] [Google Scholar]
  19. Stokes G. V. Formation and destruction of internal membranes in L cells infected with Chlamydia psittaci. Infect Immun. 1973 Feb;7(2):173–177. doi: 10.1128/iai.7.2.173-177.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Townsend A., Ohlén C., Bastin J., Ljunggren H. G., Foster L., Kärre K. Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature. 1989 Aug 10;340(6233):443–448. doi: 10.1038/340443a0. [DOI] [PubMed] [Google Scholar]
  21. Weisburg W. G., Hatch T. P., Woese C. R. Eubacterial origin of chlamydiae. J Bacteriol. 1986 Aug;167(2):570–574. doi: 10.1128/jb.167.2.570-574.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wyrick P. B., Davis C. H. Elementary body envelopes from Chlamydia psittaci can induce immediate cytotoxicity in resident mouse macrophages and L-cells. Infect Immun. 1984 Jul;45(1):297–298. doi: 10.1128/iai.45.1.297-298.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zhang Y. X., Morrison S. G., Caldwell H. D., Baehr W. Cloning and sequence analysis of the major outer membrane protein genes of two Chlamydia psittaci strains. Infect Immun. 1989 May;57(5):1621–1625. doi: 10.1128/iai.57.5.1621-1625.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhao Q., Schachter J., Stephens R. S. Lack of allelic polymorphism for the major outer membrane protein gene of the agent of guinea pig inclusion conjunctivitis (Chlamydia psittaci). Infect Immun. 1993 Jul;61(7):3078–3080. doi: 10.1128/iai.61.7.3078-3080.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES