Abstract
Gonococci producing a distinct opacity protein (OpaA in strain MS11) adhere to and are efficiently internalized by cultured epithelial cells such as the Chang conjunctiva cell line. Both adherence and uptake require interactions between OpaA and heparan sulfate proteoglycans on the mammalian cell surface. Chinese hamster ovary (CHO) cells also support adherence of gonococci through interactions of OpaA with cell surface heparan sulfate proteoglycans. However, despite this similarity in the requirements for adherence, CHO cells are not capable of internalizing gonococci. In this report, we characterized this apparent deficiency and identified a factor in fetal calf serum (FCS) which is capable of mediating uptake of gonococci by CHO cells. In the absence of FCS, OpaA+ gonococci adhered to but were not internalized by CHO cells, whereas in the presence of up to 15% FCS, the bacteria were efficiently internalized by the cells. Preincubation of bacteria, but not cells, with FCS also stimulated internalization, suggesting that a factor present in FCS was binding to the surface of gonococci and subsequently stimulating entry. Using a combination of chromatographic purification procedures, we identified the adhesive glycoprotein vitronectin as the serum factor which mediates the internalization of gonococci by CHO cells. Vitronectin-depleted serum did not support gonococcal entry, and this deficiency was restored by the addition of purified vitronectin. Further experiments using a set of gonococcal recombinants, each expressing a single member of the family of Opa outer membrane proteins, demonstrated that vitronectin bound to the surface of OpaA-producing gonococci only and that the vitronectin-mediated uptake by the CHO cells was limited to this bacterial phenotype. To our knowledge, our data are the first example that vitronectin can serve as a molecule that drives bacterial entry into epithelial cells.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apicella M. A., Ketterer M., Lee F. K., Zhou D., Rice P. A., Blake M. S. The pathogenesis of gonococcal urethritis in men: confocal and immunoelectron microscopic analysis of urethral exudates from men infected with Neisseria gonorrhoeae. J Infect Dis. 1996 Mar;173(3):636–646. doi: 10.1093/infdis/173.3.636. [DOI] [PubMed] [Google Scholar]
- Arko R. J., Chen C. Y., Schalla W. O., Sarafian S. K., Taylor C. L., Knapp J. S., Morse S. A. Binding of S protein by Neisseria gonorrhoeae and potential role in invasion. J Clin Microbiol. 1991 Jan;29(1):70–75. doi: 10.1128/jcm.29.1.70-75.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bessen D., Gotschlich E. C. Interactions of gonococci with HeLa cells: attachment, detachment, replication, penetration, and the role of protein II. Infect Immun. 1986 Oct;54(1):154–160. doi: 10.1128/iai.54.1.154-160.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J. C., Bavoil P., Clark V. L. Enhancement of the invasive ability of Neisseria gonorrhoeae by contact with HecIB, an adenocarcinoma endometrial cell line. Mol Microbiol. 1991 Jun;5(6):1531–1538. doi: 10.1111/j.1365-2958.1991.tb00800.x. [DOI] [PubMed] [Google Scholar]
- Chen T., Belland R. J., Wilson J., Swanson J. Adherence of pilus- Opa+ gonococci to epithelial cells in vitro involves heparan sulfate. J Exp Med. 1995 Aug 1;182(2):511–517. doi: 10.1084/jem.182.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chhatwal G. S., Preissner K. T., Müller-Berghaus G., Blobel H. Specific binding of the human S protein (vitronectin) to streptococci, Staphylococcus aureus, and Escherichia coli. Infect Immun. 1987 Aug;55(8):1878–1883. doi: 10.1128/iai.55.8.1878-1883.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duensing T. D., Fang H., Dorward D. W., Pincus S. H. Processing of the envelope glycoprotein gp160 in immunotoxin-resistant cell lines chronically infected with human immunodeficiency virus type 1. J Virol. 1995 Nov;69(11):7122–7131. doi: 10.1128/jvi.69.11.7122-7131.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans B. A. Ultrastructural study of cervical gonorrhea. J Infect Dis. 1977 Aug;136(2):248–255. doi: 10.1093/infdis/136.2.248. [DOI] [PubMed] [Google Scholar]
- Grassmé H. U., Ireland R. M., van Putten J. P. Gonococcal opacity protein promotes bacterial entry-associated rearrangements of the epithelial cell actin cytoskeleton. Infect Immun. 1996 May;64(5):1621–1630. doi: 10.1128/iai.64.5.1621-1630.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayman E. G., Pierschbacher M. D., Suzuki S., Ruoslahti E. Vitronectin--a major cell attachment-promoting protein in fetal bovine serum. Exp Cell Res. 1985 Oct;160(2):245–258. doi: 10.1016/0014-4827(85)90173-9. [DOI] [PubMed] [Google Scholar]
- Kupsch E. M., Knepper B., Kuroki T., Heuer I., Meyer T. F. Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO J. 1993 Feb;12(2):641–650. doi: 10.1002/j.1460-2075.1993.tb05697.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liang O. D., Maccarana M., Flock J. I., Paulsson M., Preissner K. T., Wadström T. Multiple interactions between human vitronectin and Staphylococcus aureus. Biochim Biophys Acta. 1993 Nov 25;1225(1):57–63. doi: 10.1016/0925-4439(93)90122-h. [DOI] [PubMed] [Google Scholar]
- Limper A. H., Standing J. E., Hoffman O. A., Castro M., Neese L. W. Vitronectin binds to Pneumocystis carinii and mediates organism attachment to cultured lung epithelial cells. Infect Immun. 1993 Oct;61(10):4302–4309. doi: 10.1128/iai.61.10.4302-4309.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makino S., van Putten J. P., Meyer T. F. Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into human epithelial cells. EMBO J. 1991 Jun;10(6):1307–1315. doi: 10.1002/j.1460-2075.1991.tb07649.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGee Z. A., Johnson A. P., Taylor-Robinson D. Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J Infect Dis. 1981 Mar;143(3):413–422. doi: 10.1093/infdis/143.3.413. [DOI] [PubMed] [Google Scholar]
- Meyer T. F., Pohlner J., van Putten J. P. Biology of the pathogenic Neisseriae. Curr Top Microbiol Immunol. 1994;192:283–317. doi: 10.1007/978-3-642-78624-2_13. [DOI] [PubMed] [Google Scholar]
- Nassif X., So M. Interaction of pathogenic neisseriae with nonphagocytic cells. Clin Microbiol Rev. 1995 Jul;8(3):376–388. doi: 10.1128/cmr.8.3.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panetti T. S., McKeown-Longo P. J. The alpha v beta 5 integrin receptor regulates receptor-mediated endocytosis of vitronectin. J Biol Chem. 1993 Jun 5;268(16):11492–11495. [PubMed] [Google Scholar]
- Panetti T. S., Wilcox S. A., Horzempa C., McKeown-Longo P. J. Alpha v beta 5 integrin receptor-mediated endocytosis of vitronectin is protein kinase C-dependent. J Biol Chem. 1995 Aug 4;270(31):18593–18597. doi: 10.1074/jbc.270.31.18593. [DOI] [PubMed] [Google Scholar]
- Porat N., Apicella M. A., Blake M. S. A lipooligosaccharide-binding site on HepG2 cells similar to the gonococcal opacity-associated surface protein Opa. Infect Immun. 1995 Jun;63(6):2164–2172. doi: 10.1128/iai.63.6.2164-2172.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preissner K. T. Structure and biological role of vitronectin. Annu Rev Cell Biol. 1991;7:275–310. doi: 10.1146/annurev.cb.07.110191.001423. [DOI] [PubMed] [Google Scholar]
- Robertson B. D., Frosch M., van Putten J. P. The role of galE in the biosynthesis and function of gonococcal lipopolysaccharide. Mol Microbiol. 1993 May;8(5):891–901. doi: 10.1111/j.1365-2958.1993.tb01635.x. [DOI] [PubMed] [Google Scholar]
- Rudel T., Scheurerpflug I., Meyer T. F. Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature. 1995 Jan 26;373(6512):357–359. doi: 10.1038/373357a0. [DOI] [PubMed] [Google Scholar]
- Swanson J. Studies on gonococcus infection. IV. Pili: their role in attachment of gonococci to tissue culture cells. J Exp Med. 1973 Mar 1;137(3):571–589. doi: 10.1084/jem.137.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tjia K. F., van Putten J. P., Pels E., Zanen H. C. The interaction between Neisseria gonorrhoeae and the human cornea in organ culture. An electron microscopic study. Graefes Arch Clin Exp Ophthalmol. 1988;226(4):341–345. doi: 10.1007/BF02172964. [DOI] [PubMed] [Google Scholar]
- Tomasini B. R., Mosher D. F. Conformational states of vitronectin: preferential expression of an antigenic epitope when vitronectin is covalently and noncovalently complexed with thrombin-antithrombin III or treated with urea. Blood. 1988 Sep;72(3):903–912. [PubMed] [Google Scholar]
- Van Putten J. P., Weel J. F., Grassmé H. U. Measurements of invasion by antibody labeling and electron microscopy. Methods Enzymol. 1994;236:420–437. doi: 10.1016/0076-6879(94)36031-6. [DOI] [PubMed] [Google Scholar]
- Virji M., Makepeace K., Moxon E. R. Distinct mechanisms of interactions of Opc-expressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions. Mol Microbiol. 1994 Oct;14(1):173–184. doi: 10.1111/j.1365-2958.1994.tb01277.x. [DOI] [PubMed] [Google Scholar]
- Völker W., Hess S., Vischer P., Preissner K. T. Binding and processing of multimeric vitronectin by vascular endothelial cells. J Histochem Cytochem. 1993 Dec;41(12):1823–1832. doi: 10.1177/41.12.7504009. [DOI] [PubMed] [Google Scholar]
- Waldbeser L. S., Ajioka R. S., Merz A. J., Puaoi D., Lin L., Thomas M., So M. The opaH locus of Neisseria gonorrhoeae MS11A is involved in epithelial cell invasion. Mol Microbiol. 1994 Sep;13(5):919–928. doi: 10.1111/j.1365-2958.1994.tb00483.x. [DOI] [PubMed] [Google Scholar]
- Ward M. E., Watt P. J. Adherence of Neisseria gonorrhoeae to urethral mucosal cells: an electron-microscopic study of human gonorrhea. J Infect Dis. 1972 Dec;126(6):601–605. doi: 10.1093/infdis/126.6.601. [DOI] [PubMed] [Google Scholar]
- Weel J. F., Hopman C. T., van Putten J. P. In situ expression and localization of Neisseria gonorrhoeae opacity proteins in infected epithelial cells: apparent role of Opa proteins in cellular invasion. J Exp Med. 1991 Jun 1;173(6):1395–1405. doi: 10.1084/jem.173.6.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zanetti A., Conforti G., Hess S., Martìn-Padura I., Ghibaudi E., Preissner K. T., Dejana E. Clustering of vitronectin and RGD peptides on microspheres leads to engagement of integrins on the luminal aspect of endothelial cell membrane. Blood. 1994 Aug 15;84(4):1116–1123. [PubMed] [Google Scholar]
- de Boer H. C., Preissner K. T., Bouma B. N., de Groot P. G. Binding of vitronectin-thrombin-antithrombin III complex to human endothelial cells is mediated by the heparin binding site of vitronectin. J Biol Chem. 1992 Feb 5;267(4):2264–2268. [PubMed] [Google Scholar]
- van Putten J. P., Paul S. M. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J. 1995 May 15;14(10):2144–2154. doi: 10.1002/j.1460-2075.1995.tb07208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]