Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Mar;65(3):971–977. doi: 10.1128/iai.65.3.971-977.1997

Infection with Trypanosoma cruzi selectively upregulates B7-2 molecules on macrophages and enhances their costimulatory activity.

S Frosch 1, D Küntzlin 1, B Fleischer 1
PMCID: PMC175077  PMID: 9038305

Abstract

T-cell-mediated immune responses are essential for protection against infection with the protozoan Trypanosoma cruzi. In this study, we investigated the influence of infection of murine macrophages with T. cruzi on costimulatory signals for T lymphocytes provided by these cells. We demonstrate that bone marrow-derived macrophages (BMMph) selectively and strongly upregulate expression of B7-2 molecules after infection, while the expression of other costimulatory molecules such as B7-1, intercellular adhesion molecule 1, lymphocyte function-associated antigen 3, and heat-stable antigen is not significantly affected. Infection by live trypanosomes was required. As a consequence of the strong B7-2 upregulation, the infected macrophages are able to induce proliferation of splenic CD4+ T cells in the presence of anti-CD3 antibodies with much higher efficiency than uninfected macrophages. Costimulation could be inhibited by an antibody to B7-2. Furthermore, costimulatory activity for established T-cell clones of Th1 and Th2 phenotype was also strongly enhanced in BMMph by infection with T. cruzi. Th1 cells stimulated either via anti-CD3 antibodies or via specific antigen proliferated with higher efficiency in the presence of infected macrophages than in the presence of uninfected cells. BMMph stimulated with gamma interferon (IFN-gamma), expressing elevated levels of B7-2 molecules, are also able to enhance Th1 cell proliferation, which was highest, using macrophages which were infected and in parallel were stimulated with IFN-gamma. Noteworthy, for cloned Th2 cells, the mechanism of costimulation differed, because costimulation of Th2 cells was not dependent on B7-2 upregulation but was due to secretion of interleukin-1alpha. These findings demonstrate that infection of macrophages with T. cruzi transforms the macrophage into a potent costimulatory cell based on the induction of two different costimulatory activities.

Full Text

The Full Text of this article is available as a PDF (187.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aliberti J. C., Cardoso M. A., Martins G. A., Gazzinelli R. T., Vieira L. Q., Silva J. S. Interleukin-12 mediates resistance to Trypanosoma cruzi in mice and is produced by murine macrophages in response to live trypomastigotes. Infect Immun. 1996 Jun;64(6):1961–1967. doi: 10.1128/iai.64.6.1961-1967.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allison J. P. CD28-B7 interactions in T-cell activation. Curr Opin Immunol. 1994 Jun;6(3):414–419. doi: 10.1016/0952-7915(94)90120-1. [DOI] [PubMed] [Google Scholar]
  3. Araujo F. G. Development of resistance to Trypanosoma cruzi in mice depends on a viable population of L3T4+ (CD4+) T lymphocytes. Infect Immun. 1989 Jul;57(7):2246–2248. doi: 10.1128/iai.57.7.2246-2248.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhattacharya A., Dorf M. E., Springer T. A. A shared alloantigenic determinant on Ia antigens encoded by the I-A and I-E subregions: evidence for I region gene duplication. J Immunol. 1981 Dec;127(6):2488–2495. [PubMed] [Google Scholar]
  5. Bilzer T., Stavrou D., Dahme E., Keiditsch E., Bürrig K. F., Anzil A. P., Wechsler W. Morphological, immunocytochemical and growth characteristics of three human glioblastomas established in vitro. Virchows Arch A Pathol Anat Histopathol. 1991;418(4):281–293. doi: 10.1007/BF01600156. [DOI] [PubMed] [Google Scholar]
  6. Bluestone J. A. New perspectives of CD28-B7-mediated T cell costimulation. Immunity. 1995 Jun;2(6):555–559. doi: 10.1016/1074-7613(95)90000-4. [DOI] [PubMed] [Google Scholar]
  7. Bogdan C., Moll H., Solbach W., Röllinghoff M. Tumor necrosis factor-alpha in combination with interferon-gamma, but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes. Eur J Immunol. 1990 May;20(5):1131–1135. doi: 10.1002/eji.1830200528. [DOI] [PubMed] [Google Scholar]
  8. Bruce J., Symington F. W., McKearn T. J., Sprent J. A monoclonal antibody discriminating between subsets of T and B cells. J Immunol. 1981 Dec;127(6):2496–2501. [PubMed] [Google Scholar]
  9. Chakkalath H. R., Titus R. G. Leishmania major-parasitized macrophages augment Th2-type T cell activation. J Immunol. 1994 Nov 15;153(10):4378–4387. [PubMed] [Google Scholar]
  10. Damle N. K., Klussman K., Linsley P. S., Aruffo A. Differential costimulatory effects of adhesion molecules B7, ICAM-1, LFA-3, and VCAM-1 on resting and antigen-primed CD4+ T lymphocytes. J Immunol. 1992 Apr 1;148(7):1985–1992. [PubMed] [Google Scholar]
  11. Freeman G. J., Borriello F., Hodes R. J., Reiser H., Gribben J. G., Ng J. W., Kim J., Goldberg J. M., Hathcock K., Laszlo G. Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J Exp Med. 1993 Dec 1;178(6):2185–2192. doi: 10.1084/jem.178.6.2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frosch S., Bonifas U., Eck H. P., Bockstette M., Droege W., Rüde E., Reske-Kunz A. B. The efficient bovine insulin presentation capacity of bone marrow-derived macrophages activated by granulocyte-macrophage colony-stimulating factor correlates with a high level of intracellular reducing thiols. Eur J Immunol. 1993 Jul;23(7):1430–1434. doi: 10.1002/eji.1830230704. [DOI] [PubMed] [Google Scholar]
  13. Frosch S., Kraus S., Fleischer B. Trypanosoma cruzi is a potent inducer of interleukin-12 production in macrophages. Med Microbiol Immunol. 1996 Nov;185(3):189–193. doi: 10.1007/s004300050030. [DOI] [PubMed] [Google Scholar]
  14. Fruth U., Solioz N., Louis J. A. Leishmania major interferes with antigen presentation by infected macrophages. J Immunol. 1993 Mar 1;150(5):1857–1864. [PubMed] [Google Scholar]
  15. Harding F. A., McArthur J. G., Gross J. A., Raulet D. H., Allison J. P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature. 1992 Apr 16;356(6370):607–609. doi: 10.1038/356607a0. [DOI] [PubMed] [Google Scholar]
  16. Hathcock K. S., Laszlo G., Dickler H. B., Bradshaw J., Linsley P., Hodes R. J. Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science. 1993 Nov 5;262(5135):905–907. doi: 10.1126/science.7694361. [DOI] [PubMed] [Google Scholar]
  17. Hathcock K. S., Laszlo G., Pucillo C., Linsley P., Hodes R. J. Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J Exp Med. 1994 Aug 1;180(2):631–640. doi: 10.1084/jem.180.2.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kaye J., Gillis S., Mizel S. B., Shevach E. M., Malek T. R., Dinarello C. A., Lachman L. B., Janeway C. A., Jr Growth of a cloned helper T cell line induced by a monoclonal antibody specific for the antigen receptor: interleukin 1 is required for the expression of receptors for interleukin 2. J Immunol. 1984 Sep;133(3):1339–1345. [PubMed] [Google Scholar]
  19. Kaye P. M., Rogers N. J., Curry A. J., Scott J. C. Deficient expression of co-stimulatory molecules on Leishmania-infected macrophages. Eur J Immunol. 1994 Nov;24(11):2850–2854. doi: 10.1002/eji.1830241140. [DOI] [PubMed] [Google Scholar]
  20. Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Linsley P. S., Brady W., Grosmaire L., Aruffo A., Damle N. K., Ledbetter J. A. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med. 1991 Mar 1;173(3):721–730. doi: 10.1084/jem.173.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu Y., Janeway C. A., Jr Microbial induction of co-stimulatory activity for CD4 T-cell growth. Int Immunol. 1991 Apr;3(4):323–332. doi: 10.1093/intimm/3.4.323. [DOI] [PubMed] [Google Scholar]
  23. Lytton S. D., Mozes E., Jaffe C. L. Effect of macrophage infection by Leishmania on the proliferation of an antigen-specific T-cell line, TPB1, to a non-parasite antigen. Parasite Immunol. 1993 Aug;15(8):489–492. doi: 10.1111/j.1365-3024.1993.tb00635.x. [DOI] [PubMed] [Google Scholar]
  24. McArthur J. G., Raulet D. H. CD28-induced costimulation of T helper type 2 cells mediated by induction of responsiveness to interleukin 4. J Exp Med. 1993 Nov 1;178(5):1645–1653. doi: 10.1084/jem.178.5.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McKnight A. J., Perez V. L., Shea C. M., Gray G. S., Abbas A. K. Costimulator dependence of lymphokine secretion by naive and activated CD4+ T lymphocytes from TCR transgenic mice. J Immunol. 1994 Jun 1;152(11):5220–5225. [PubMed] [Google Scholar]
  26. Meuer S. C., Hussey R. E., Fabbi M., Fox D., Acuto O., Fitzgerald K. A., Hodgdon J. C., Protentis J. P., Schlossman S. F., Reinherz E. L. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell. 1984 Apr;36(4):897–906. doi: 10.1016/0092-8674(84)90039-4. [DOI] [PubMed] [Google Scholar]
  27. Minoprio P., el Cheikh M. C., Murphy E., Hontebeyrie-Joskowicz M., Coffman R., Coutinho A., O'Garra A. Xid-associated resistance to experimental Chagas' disease is IFN-gamma dependent. J Immunol. 1993 Oct 15;151(8):4200–4208. [PubMed] [Google Scholar]
  28. Mueller D. L., Jenkins M. K., Schwartz R. H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol. 1989;7:445–480. doi: 10.1146/annurev.iy.07.040189.002305. [DOI] [PubMed] [Google Scholar]
  29. Nabavi N., Freeman G. J., Gault A., Godfrey D., Nadler L. M., Glimcher L. H. Signalling through the MHC class II cytoplasmic domain is required for antigen presentation and induces B7 expression. Nature. 1992 Nov 19;360(6401):266–268. doi: 10.1038/360266a0. [DOI] [PubMed] [Google Scholar]
  30. Petray P. B., Rottenberg M. E., Bertot G., Corral R. S., Diaz A., Orn A., Grinstein S. Effect of anti-gamma-interferon and anti-interleukin-4 administration on the resistance of mice against infection with reticulotropic and myotropic strains of Trypanosoma cruzi. Immunol Lett. 1993 Jan;35(1):77–80. doi: 10.1016/0165-2478(93)90151-q. [DOI] [PubMed] [Google Scholar]
  31. Prina E., Jouanne C., de Souza Lão S., Szabo A., Guillet J. G., Antoine J. C. Antigen presentation capacity of murine macrophages infected with Leishmania amazonensis amastigotes. J Immunol. 1993 Aug 15;151(4):2050–2061. [PubMed] [Google Scholar]
  32. Reed S. G. In vivo administration of recombinant IFN-gamma induces macrophage activation, and prevents acute disease, immune suppression, and death in experimental Trypanosoma cruzi infections. J Immunol. 1988 Jun 15;140(12):4342–4347. [PubMed] [Google Scholar]
  33. Reske-Kunz A. B., Spaeth E., Reske K., Lohmann-Matthes M. L., Rüde E. Induction of anamnestic T cell proliferation by antigen-pulsed, bone marrow-derived macrophages. Eur J Immunol. 1981 Oct;11(10):745–750. doi: 10.1002/eji.1830111003. [DOI] [PubMed] [Google Scholar]
  34. Rivera-Vanderpas M. T., Rodriguez A. M., Afchain D., Bazin H., Capron A. Trypanosoma cruzi: variation in susceptibility of inbred strains of rats. Acta Trop. 1983 Mar;40(1):5–10. [PubMed] [Google Scholar]
  35. Rottenberg M. E., Bakhiet M., Olsson T., Kristensson K., Mak T., Wigzell H., Orn A. Differential susceptibilities of mice genomically deleted of CD4 and CD8 to infections with Trypanosoma cruzi or Trypanosoma brucei. Infect Immun. 1993 Dec;61(12):5129–5133. doi: 10.1128/iai.61.12.5129-5133.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rottenberg M., Cardoni R. L., Andersson R., Segura E. L., Orn A. Role of T helper/inducer cells as well as natural killer cells in resistance to Trypanosoma cruzi infection. Scand J Immunol. 1988 Nov;28(5):573–582. doi: 10.1111/j.1365-3083.1988.tb01489.x. [DOI] [PubMed] [Google Scholar]
  37. Russo M., Starobinas N., Minoprio P., Coutinho A., Hontebeyrie-Joskowicz M. Parasitic load increases and myocardial inflammation decreases in Trypanosoma cruzi-infected mice after inactivation of helper T cells. Ann Inst Pasteur Immunol. 1988 May-Jun;139(3):225–236. doi: 10.1016/0769-2625(88)90136-5. [DOI] [PubMed] [Google Scholar]
  38. Saha B., Das G., Vohra H., Ganguly N. K., Mishra G. C. Macrophage-T cell interaction in experimental mycobacterial infection. Selective regulation of co-stimulatory molecules on Mycobacterium-infected macrophages and its implication in the suppression of cell-mediated immune response. Eur J Immunol. 1994 Nov;24(11):2618–2624. doi: 10.1002/eji.1830241108. [DOI] [PubMed] [Google Scholar]
  39. Saha B., Das G., Vohra H., Ganguly N. K., Mishra G. C. Macrophage-T cell interaction in experimental visceral leishmaniasis: failure to express costimulatory molecules on Leishmania-infected macrophages and its implication in the suppression of cell-mediated immunity. Eur J Immunol. 1995 Sep;25(9):2492–2498. doi: 10.1002/eji.1830250913. [DOI] [PubMed] [Google Scholar]
  40. Sarmiento M., Dialynas D. P., Lancki D. W., Wall K. A., Lorber M. I., Loken M. R., Fitch F. W. Cloned T lymphocytes and monoclonal antibodies as probes for cell surface molecules active in T cell-mediated cytolysis. Immunol Rev. 1982;68:135–169. doi: 10.1111/j.1600-065x.1982.tb01063.x. [DOI] [PubMed] [Google Scholar]
  41. Takei F. Inhibition of mixed lymphocyte response by a rat monoclonal antibody to a novel murine lymphocyte activation antigen (MALA-2). J Immunol. 1985 Mar;134(3):1403–1407. [PubMed] [Google Scholar]
  42. Tarleton R. L. Depletion of CD8+ T cells increases susceptibility and reverses vaccine-induced immunity in mice infected with Trypanosoma cruzi. J Immunol. 1990 Jan 15;144(2):717–724. [PubMed] [Google Scholar]
  43. Tarleton R. L., Koller B. H., Latour A., Postan M. Susceptibility of beta 2-microglobulin-deficient mice to Trypanosoma cruzi infection. Nature. 1992 Mar 26;356(6367):338–340. doi: 10.1038/356338a0. [DOI] [PubMed] [Google Scholar]
  44. Tarleton R. L. Trypanosoma cruzi-induced suppression of IL-2 production. I. Evidence for the presence of IL-2-producing cells. J Immunol. 1988 Apr 15;140(8):2763–2768. [PubMed] [Google Scholar]
  45. Tushinski R. J., Oliver I. T., Guilbert L. J., Tynan P. W., Warner J. R., Stanley E. R. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell. 1982 Jan;28(1):71–81. doi: 10.1016/0092-8674(82)90376-2. [DOI] [PubMed] [Google Scholar]
  46. Van Seventer G. A., Shimizu Y., Horgan K. J., Shaw S. The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol. 1990 Jun 15;144(12):4579–4586. [PubMed] [Google Scholar]
  47. Wilde D. B., Marrack P., Kappler J., Dialynas D. P., Fitch F. W. Evidence implicating L3T4 in class II MHC antigen reactivity; monoclonal antibody GK1.5 (anti-L3T4a) blocks class II MHC antigen-specific proliferation, release of lymphokines, and binding by cloned murine helper T lymphocyte lines. J Immunol. 1983 Nov;131(5):2178–2183. [PubMed] [Google Scholar]
  48. Zhang L., Tarleton R. L. Characterization of cytokine production in murine Trypanosoma cruzi infection by in situ immunocytochemistry: lack of association between susceptibility and type 2 cytokine production. Eur J Immunol. 1996 Jan;26(1):102–109. doi: 10.1002/eji.1830260116. [DOI] [PubMed] [Google Scholar]
  49. de Fougerolles A. R., Springer T. A. Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J Exp Med. 1992 Jan 1;175(1):185–190. doi: 10.1084/jem.175.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES