Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Mar;65(3):1071–1076. doi: 10.1128/iai.65.3.1071-1076.1997

Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin.

B E Britigan 1, G T Rasmussen 1, C D Cox 1
PMCID: PMC175089  PMID: 9038317

Abstract

Pseudomonas aeruginosa causes acute and chronic infections of the human lung, with resultant tissue injury. We have previously shown that iron bound to pyochelin, a siderophore secreted by the organism to acquire iron, is an efficient catalyst for hydroxyl radical (HO.) formation and augments injury to pulmonary artery endothelial cells resulting from their exposure to superoxide (O2.) and/or H2O2. Sources for O2-. and H2O2 included phorbol myristate acetate (PMA)-stimulated neutrophils and pyocyanin. Pyocyanin, another P. aeruginosa secretory product, undergoes cell-mediated redox, thereby forming O2-. and H2O2. In P. aeruginosa lung infections, damage to airway epithelial cells is probably more extensive than that to endothelial cells. Therefore, we examined whether ferripyochelin also augments oxidant-mediated damage to airway epithelial cells. A549 cells, a human type II alveolar epithelial cell line, was exposed to H2O2, PMA-stimulated neutrophils, or pyocyanin, and injury was determined by release of 51Cr from prelabeled cells. Ferripyochelin significantly increased (> 10-fold) oxidant-mediated cell injury regardless of whether H2O2, neutrophils, or pyocyanin was employed. Apo-pyochelin was not effective, and ferripyochelin was not toxic by itself at the concentrations employed. Spin trapping with alpha-(4-pyrridyl-1-oxide)-N-t-butyl-nitrone-ethanol confirmed the generation of HO., and injury was decreased by a variety of antioxidants, including superoxide dismutase, catalase, and dimethylthiourea. These data are consistent with the hypothesis that the presence of ferripyochelin at sites of P. aeruginosa lung infection could contribute to tissue injury through its ability to promote HO.-mediated damage to airway epithelial cells.

Full Text

The Full Text of this article is available as a PDF (149.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britigan B. E., Edeker B. L. Pseudomonas and neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation. J Clin Invest. 1991 Oct;88(4):1092–1102. doi: 10.1172/JCI115408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Britigan B. E., Hayek M. B., Doebbeling B. N., Fick R. B., Jr Transferrin and lactoferrin undergo proteolytic cleavage in the Pseudomonas aeruginosa-infected lungs of patients with cystic fibrosis. Infect Immun. 1993 Dec;61(12):5049–5055. doi: 10.1128/iai.61.12.5049-5055.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Britigan B. E., Rasmussen G. T., Cox C. D. Pseudomonas siderophore pyochelin enhances neutrophil-mediated endothelial cell injury. Am J Physiol. 1994 Feb;266(2 Pt 1):L192–L198. doi: 10.1152/ajplung.1994.266.2.L192. [DOI] [PubMed] [Google Scholar]
  4. Britigan B. E., Roeder T. L., Rasmussen G. T., Shasby D. M., McCormick M. L., Cox C. D. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. J Clin Invest. 1992 Dec;90(6):2187–2196. doi: 10.1172/JCI116104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buettner G. R. The reaction of superoxide, formate radical, and hydrated electron with transferrin and its model compound, Fe(III)-ethylenediamine-N,N'-bis[2-(2-hydroxyphenyl)acetic acid] as studied by pulse radiolysis. J Biol Chem. 1987 Sep 5;262(25):11995–11998. [PubMed] [Google Scholar]
  6. Cantin A. M., Fells G. A., Hubbard R. C., Crystal R. G. Antioxidant macromolecules in the epithelial lining fluid of the normal human lower respiratory tract. J Clin Invest. 1990 Sep;86(3):962–971. doi: 10.1172/JCI114798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coffman T. J., Cox C. D., Edeker B. L., Britigan B. E. Possible role of bacterial siderophores in inflammation. Iron bound to the Pseudomonas siderophore pyochelin can function as a hydroxyl radical catalyst. J Clin Invest. 1990 Oct;86(4):1030–1037. doi: 10.1172/JCI114805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cox C. D., Rinehart K. L., Jr, Moore M. L., Cook J. C., Jr Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4256–4260. doi: 10.1073/pnas.78.7.4256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cox C. D. Role of pyocyanin in the acquisition of iron from transferrin. Infect Immun. 1986 Apr;52(1):263–270. doi: 10.1128/iai.52.1.263-270.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fetzer A. E., Werner A. S., Hagstrom J. W. Pathologic features of pseudomonal pneumonia. Am Rev Respir Dis. 1967 Dec;96(6):1121–1130. doi: 10.1164/arrd.1967.96.6.1121. [DOI] [PubMed] [Google Scholar]
  11. Fick R. B., Jr Pathogenesis of the pseudomonas lung lesion in cystic fibrosis. Chest. 1989 Jul;96(1):158–164. doi: 10.1378/chest.96.1.158. [DOI] [PubMed] [Google Scholar]
  12. Gardner P. R. Superoxide production by the mycobacterial and pseudomonad quinoid pigments phthiocol and pyocyanine in human lung cells. Arch Biochem Biophys. 1996 Sep 1;333(1):267–274. doi: 10.1006/abbi.1996.0390. [DOI] [PubMed] [Google Scholar]
  13. Gillissen A., Roum J. H., Hoyt R. F., Crystal R. G. Aerosolization of superoxide dismutase. Augmentation of respiratory epithelial lining fluid antioxidant screen by aerosolization of recombinant human Cu++/Zn++ superoxide dismutase. Chest. 1993 Sep;104(3):811–815. doi: 10.1378/chest.104.3.811. [DOI] [PubMed] [Google Scholar]
  14. Haas B., Kraut J., Marks J., Zanker S. C., Castignetti D. Siderophore presence in sputa of cystic fibrosis patients. Infect Immun. 1991 Nov;59(11):3997–4000. doi: 10.1128/iai.59.11.3997-4000.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Halliwell B., Gutteridge J. M. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys. 1986 May 1;246(2):501–514. doi: 10.1016/0003-9861(86)90305-x. [DOI] [PubMed] [Google Scholar]
  16. Hassan H. M., Fridovich I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys. 1979 Sep;196(2):385–395. doi: 10.1016/0003-9861(79)90289-3. [DOI] [PubMed] [Google Scholar]
  17. Hassan H. M., Fridovich I. Mechanism of the antibiotic action pyocyanine. J Bacteriol. 1980 Jan;141(1):156–163. doi: 10.1128/jb.141.1.156-163.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lieber M., Smith B., Szakal A., Nelson-Rees W., Todaro G. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976 Jan 15;17(1):62–70. doi: 10.1002/ijc.2910170110. [DOI] [PubMed] [Google Scholar]
  19. Lykens M. G., Davis W. B., Pacht E. R. Antioxidant activity of bronchoalveolar lavage fluid in the adult respiratory distress syndrome. Am J Physiol. 1992 Feb;262(2 Pt 1):L169–L175. doi: 10.1152/ajplung.1992.262.2.L169. [DOI] [PubMed] [Google Scholar]
  20. Miller R. A., Britigan B. E. Protease-cleaved iron-transferrin augments oxidant-mediated endothelial cell injury via hydroxyl radical formation. J Clin Invest. 1995 Jun;95(6):2491–2500. doi: 10.1172/JCI117950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miller R. A., Britigan B. E. The formation and biologic significance of phagocyte-derived oxidants. J Investig Med. 1995 Feb;43(1):39–49. [PubMed] [Google Scholar]
  22. Miller R. A., Rasmussen G. T., Cox C. D., Britigan B. E. Protease cleavage of iron-transferrin augments pyocyanin-mediated endothelial cell injury via promotion of hydroxyl radical formation. Infect Immun. 1996 Jan;64(1):182–188. doi: 10.1128/iai.64.1.182-188.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rush J. D., Maskos Z., Koppenol W. H. Distinction between hydroxyl radical and ferryl species. Methods Enzymol. 1990;186:148–156. doi: 10.1016/0076-6879(90)86104-4. [DOI] [PubMed] [Google Scholar]
  24. Shand G. H., Pedersen S. S., Brown M. R., Høiby N. Serum antibodies to Pseudomonas aeruginosa outer-membrane proteins and iron-regulated membrane proteins at different stages of chronic cystic fibrosis lung infection. J Med Microbiol. 1991 Apr;34(4):203–212. doi: 10.1099/00222615-34-4-203. [DOI] [PubMed] [Google Scholar]
  25. Siefferman C. M., Regelmann W. E., Gray B. H. Pseudomonas aeruginosa variants isolated from patients with cystic fibrosis are killed by a bactericidal protein from human polymorphonuclear leukocytes. Infect Immun. 1991 Jun;59(6):2152–2157. doi: 10.1128/iai.59.6.2152-2157.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Simon R. H., DeHart P. D., Nadeau D. M. Resistance of rat pulmonary alveolar epithelial cells to neutrophil- and oxidant-induced injury. Am J Respir Cell Mol Biol. 1989 Sep;1(3):221–229. doi: 10.1165/ajrcmb/1.3.221. [DOI] [PubMed] [Google Scholar]
  27. Simon R. H., DeHart P. D., Todd R. F., 3rd Neutrophil-induced injury of rat pulmonary alveolar epithelial cells. J Clin Invest. 1986 Nov;78(5):1375–1386. doi: 10.1172/JCI112724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Speert D. P., Bond M., Woodman R. C., Curnutte J. T. Infection with Pseudomonas cepacia in chronic granulomatous disease: role of nonoxidative killing by neutrophils in host defense. J Infect Dis. 1994 Dec;170(6):1524–1531. doi: 10.1093/infdis/170.6.1524. [DOI] [PubMed] [Google Scholar]
  29. Sutton H. C., Winterbourn C. C. On the participation of higher oxidation states of iron and copper in Fenton reactions. Free Radic Biol Med. 1989;6(1):53–60. doi: 10.1016/0891-5849(89)90160-3. [DOI] [PubMed] [Google Scholar]
  30. Tauber A. I., Borregaard N., Simons E., Wright J. Chronic granulomatous disease: a syndrome of phagocyte oxidase deficiencies. Medicine (Baltimore) 1983 Sep;62(5):286–309. [PubMed] [Google Scholar]
  31. Wasiluk K. R., Skubitz K. M., Gray B. H. Comparison of granule proteins from human polymorphonuclear leukocytes which are bactericidal toward Pseudomonas aeruginosa. Infect Immun. 1991 Nov;59(11):4193–4200. doi: 10.1128/iai.59.11.4193-4200.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson R., Sykes D. A., Watson D., Rutman A., Taylor G. W., Cole P. J. Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun. 1988 Sep;56(9):2515–2517. doi: 10.1128/iai.56.9.2515-2517.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Winterbourn C. C. Lactoferrin-catalysed hydroxyl radical production. Additional requirement for a chelating agent. Biochem J. 1983 Jan 15;210(1):15–19. doi: 10.1042/bj2100015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Winterbourn C. C., Sutton H. C. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction. Arch Biochem Biophys. 1986 Jan;244(1):27–34. doi: 10.1016/0003-9861(86)90090-1. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES