Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Mar;65(3):1077–1082. doi: 10.1128/iai.65.3.1077-1082.1997

Involvement of mannose receptor in cytokine interleukin-1beta (IL-1beta), IL-6, and granulocyte-macrophage colony-stimulating factor responses, but not in chemokine macrophage inflammatory protein 1beta (MIP-1beta), MIP-2, and KC responses, caused by attachment of Candida albicans to macrophages.

Y Yamamoto 1, T W Klein 1, H Friedman 1
PMCID: PMC175090  PMID: 9038318

Abstract

The production of chemotactic cytokines (chemokines) and other cytokines by macrophages in response to fungal infection is thought to be critical during the course of candidiasis. However, the mechanism of cytokine synthesis by macrophages in response to fungi is not well understood. Therefore, the response of macrophages to Candida albicans was examined in terms of receptor-mediated chemokine and other cytokine mRNA induction. Attachment of C. albicans to murine thioglycollate-elicited peritoneal macrophages induced increased mRNA levels of the cytokines interleukin-1beta (IL-1beta), IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF) and the chemokines macrophage inflammatory protein 1beta (MIP-1beta), MIP-2, and KC (a member of the platelet factor 4 neutrophil chemoattractant family), as determined by quantitative reverse transcription-PCR. However, treatment of macrophages with alpha-methyl-D-mannoside significantly reduced the cytokine GM-CSF response to C. albicans but did not affect the chemokine MIP-2 response. Antisense oligodeoxynucleotide (ODN) to mannose receptor (MR) mRNA inhibited the expression and function of MR in macrophages as determined by Western blot analysis and 125I-labeled mannose-bovine serum albumin (BSA) binding, and also inhibited the elevation of cytokine IL-1beta, IL-6, and GM-CSF mRNA levels induced by C. albicans attachment. Elevation of chemokine MIP-1beta, MIP-2, and KC mRNA levels induced by C. albicans was not affected in macrophages whose MR expression was suppressed by antisense ODN treatment. Furthermore, IL-4 treatment of macrophages, which up-regulated MR expression as determined by Western blot analysis and fluorescein isothiocyanate-labeled mannose-BSA uptake, enhanced the level of cytokine GM-CSF mRNA induced by C. albicans but not the level of the chemokine MIP-2 mRNA. These results indicate that selected cytokine responses of macrophages to C. albicans are mediated by MR, while some chemokine responses may be mediated by other receptors.

Full Text

The Full Text of this article is available as a PDF (311.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashman R. B., Papadimitriou J. M. Production and function of cytokines in natural and acquired immunity to Candida albicans infection. Microbiol Rev. 1995 Dec;59(4):646–672. doi: 10.1128/mr.59.4.646-672.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ausiello C. M., Urbani F., Gessani S., Spagnoli G. C., Gomez M. J., Cassone A. Cytokine gene expression in human peripheral blood mononuclear cells stimulated by mannoprotein constituents from Candida albicans. Infect Immun. 1993 Oct;61(10):4105–4111. doi: 10.1128/iai.61.10.4105-4111.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bacle F., Haeffner-Cavaillon N., Laude M., Couturier C., Kazatchkine M. D. Induction of IL-1 release through stimulation of the C3b/C4b complement receptor type one (CR1, CD35) on human monocytes. J Immunol. 1990 Jan 1;144(1):147–152. [PubMed] [Google Scholar]
  4. Capaccioli S., Di Pasquale G., Mini E., Mazzei T., Quattrone A. Cationic lipids improve antisense oligonucleotide uptake and prevent degradation in cultured cells and in human serum. Biochem Biophys Res Commun. 1993 Dec 15;197(2):818–825. doi: 10.1006/bbrc.1993.2552. [DOI] [PubMed] [Google Scholar]
  5. Ehlers S., Mielke M. E., Blankenstein T., Hahn H. Kinetic analysis of cytokine gene expression in the livers of naive and immune mice infected with Listeria monocytogenes. The immediate early phase in innate resistance and acquired immunity. J Immunol. 1992 Nov 1;149(9):3016–3022. [PubMed] [Google Scholar]
  6. Elstad M. R., Parker C. J., Cowley F. S., Wilcox L. A., McIntyre T. M., Prescott S. M., Zimmerman G. A. CD11b/CD18 integrin and a beta-glucan receptor act in concert to induce the synthesis of platelet-activating factor by monocytes. J Immunol. 1994 Jan 1;152(1):220–230. [PubMed] [Google Scholar]
  7. Garner R. E., Rubanowice K., Sawyer R. T., Hudson J. A. Secretion of TNF-alpha by alveolar macrophages in response to Candida albicans mannan. J Leukoc Biol. 1994 Feb;55(2):161–168. doi: 10.1002/jlb.55.2.161. [DOI] [PubMed] [Google Scholar]
  8. Harris N., Super M., Rits M., Chang G., Ezekowitz R. A. Characterization of the murine macrophage mannose receptor: demonstration that the downregulation of receptor expression mediated by interferon-gamma occurs at the level of transcription. Blood. 1992 Nov 1;80(9):2363–2373. [PubMed] [Google Scholar]
  9. Huang S., Paulauskis J. D., Godleski J. J., Kobzik L. Expression of macrophage inflammatory protein-2 and KC mRNA in pulmonary inflammation. Am J Pathol. 1992 Oct;141(4):981–988. [PMC free article] [PubMed] [Google Scholar]
  10. Iizawa Y., Brown J. F., Czuprynski C. J. Early expression of cytokine mRNA in mice infected with Listeria monocytogenes. Infect Immun. 1992 Oct;60(10):4068–4073. doi: 10.1128/iai.60.10.4068-4073.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Karbassi A., Becker J. M., Foster J. S., Moore R. N. Enhanced killing of Candida albicans by murine macrophages treated with macrophage colony-stimulating factor: evidence for augmented expression of mannose receptors. J Immunol. 1987 Jul 15;139(2):417–421. [PubMed] [Google Scholar]
  12. Klein T. W., Newton C. A., Blanchard D. K., Widen R., Friedman H. Induction of interleukin 1 by Legionella pneumophila antigens in mouse macrophage and human mononuclear leukocyte cultures. Zentralbl Bakteriol Mikrobiol Hyg A. 1987 Jul;265(3-4):462–471. doi: 10.1016/s0176-6724(87)80265-1. [DOI] [PubMed] [Google Scholar]
  13. Lennartz M. R., Cole F. S., Stahl P. D. Biosynthesis and processing of the mannose receptor in human macrophages. J Biol Chem. 1989 Feb 5;264(4):2385–2390. [PubMed] [Google Scholar]
  14. Leonard E. J., Yoshimura T. Neutrophil attractant/activation protein-1 (NAP-1 [interleukin-8]). Am J Respir Cell Mol Biol. 1990 Jun;2(6):479–486. doi: 10.1165/ajrcmb/2.6.479. [DOI] [PubMed] [Google Scholar]
  15. Maródi L., Korchak H. M., Johnston R. B., Jr Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages. J Immunol. 1991 Apr 15;146(8):2783–2789. [PubMed] [Google Scholar]
  16. Maródi L., Schreiber S., Anderson D. C., MacDermott R. P., Korchak H. M., Johnston R. B., Jr Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors. J Clin Invest. 1993 Jun;91(6):2596–2601. doi: 10.1172/JCI116498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Melby P. C., Andrade-Narvaez F. J., Darnell B. J., Valencia-Pacheco G., Tryon V. V., Palomo-Cetina A. Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis. Infect Immun. 1994 Mar;62(3):837–842. doi: 10.1128/iai.62.3.837-842.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Noonan K. E., Roninson I. B. mRNA phenotyping by enzymatic amplification of randomly primed cDNA. Nucleic Acids Res. 1988 Nov 11;16(21):10366–10366. doi: 10.1093/nar/16.21.10366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
  20. Pontow S. E., Kery V., Stahl P. D. Mannose receptor. Int Rev Cytol. 1992;137B:221–244. doi: 10.1016/s0074-7696(08)62606-6. [DOI] [PubMed] [Google Scholar]
  21. Rosati E., Scaringi L., Cornacchione P., Fettucciari K., Sabatini R., Rossi R., Marconi P. Cytokine response to inactivated Candida albicans in mice. Cell Immunol. 1995 May;162(2):256–264. doi: 10.1006/cimm.1995.1077. [DOI] [PubMed] [Google Scholar]
  22. Ross G. D., Cain J. A., Lachmann P. J. Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin as functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b. J Immunol. 1985 May;134(5):3307–3315. [PubMed] [Google Scholar]
  23. Sherry B., Tekamp-Olson P., Gallegos C., Bauer D., Davatelis G., Wolpe S. D., Masiarz F., Coit D., Cerami A. Resolution of the two components of macrophage inflammatory protein 1, and cloning and characterization of one of those components, macrophage inflammatory protein 1 beta. J Exp Med. 1988 Dec 1;168(6):2251–2259. doi: 10.1084/jem.168.6.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stein M., Keshav S., Harris N., Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992 Jul 1;176(1):287–292. doi: 10.1084/jem.176.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Taub D. D., Oppenheim J. J. Review of the chemokine meeting the Third International Symposium of Chemotactic Cytokines. Cytokine. 1993 May;5(3):175–179. doi: 10.1016/1043-4666(93)90001-l. [DOI] [PubMed] [Google Scholar]
  26. Van Strijp J. A., Russell D. G., Tuomanen E., Brown E. J., Wright S. D. Ligand specificity of purified complement receptor type three (CD11b/CD18, alpha m beta 2, Mac-1). Indirect effects of an Arg-Gly-Asp (RGD) sequence. J Immunol. 1993 Sep 15;151(6):3324–3336. [PubMed] [Google Scholar]
  27. Wang M., Friedman H., Djeu J. Y. Enhancement of human monocyte function against Candida albicans by the colony-stimulating factors (CSF): IL-3, granulocyte-macrophage-CSF, and macrophage-CSF. J Immunol. 1989 Jul 15;143(2):671–677. [PubMed] [Google Scholar]
  28. Widmer U., Manogue K. R., Cerami A., Sherry B. Genomic cloning and promoter analysis of macrophage inflammatory protein (MIP)-2, MIP-1 alpha, and MIP-1 beta, members of the chemokine superfamily of proinflammatory cytokines. J Immunol. 1993 Jun 1;150(11):4996–5012. [PubMed] [Google Scholar]
  29. Wolpe S. D., Cerami A. Macrophage inflammatory proteins 1 and 2: members of a novel superfamily of cytokines. FASEB J. 1989 Dec;3(14):2565–2573. doi: 10.1096/fasebj.3.14.2687068. [DOI] [PubMed] [Google Scholar]
  30. Yamamoto Y., Klein T. W., Friedman H. Induction of cytokine granulocyte-macrophage colony-stimulating factor and chemokine macrophage inflammatory protein 2 mRNAs in macrophages by Legionella pneumophila or Salmonella typhimurium attachment requires different ligand-receptor systems. Infect Immun. 1996 Aug;64(8):3062–3068. doi: 10.1128/iai.64.8.3062-3068.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yamamoto Y., Klein T. W., Newton C. A., Widen R., Friedman H. Growth of Legionella pneumophila in thioglycolate-elicited peritoneal macrophages from A/J mice. Infect Immun. 1988 Feb;56(2):370–375. doi: 10.1128/iai.56.2.370-375.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yamamoto Y., Okubo S., Klein T. W., Onozaki K., Saito T., Friedman H. Binding of Legionella pneumophila to macrophages increases cellular cytokine mRNA. Infect Immun. 1994 Sep;62(9):3947–3956. doi: 10.1128/iai.62.9.3947-3956.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yamamoto Y., Retzlaff C., He P., Klein T. W., Friedman H. Quantitative reverse transcription-PCR analysis of Legionella pneumophila-induced cytokine mRNA in different macrophage populations by high-performance liquid chromatography. Clin Diagn Lab Immunol. 1995 Jan;2(1):18–24. doi: 10.1128/cdli.2.1.18-24.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES