Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Mar;65(3):1114–1118. doi: 10.1128/iai.65.3.1114-1118.1997

Role of pertussis toxin A subunit in neutrophil migration and vascular permeability.

G A Brito 1, M H Souza 1, A A Melo-Filho 1, E L Hewlett 1, A A Lima 1, C A Flores 1, R A Ribeiro 1
PMCID: PMC175098  PMID: 9038326

Abstract

The anti-inflammatory activity of pertussis toxin (Ptx) was compared to that of a noncatalytic mutant of pertussis toxin (9K/129G; Ptxm), which contains two amino acid substitutions in the A protomer, by using a rat model of inflammation. The toxins were administered intravenously 1 h prior to the injection of inflammatory stimuli. Ptx, but not Ptxm, inhibited neutrophil migration into peritoneal cavities in response to formyl-methionyl-leucyl-phenylalanine and lipopolysaccharide. The inhibitory effect of Ptx on neutrophil migration could not be explained by the ability of the toxin to induce leukopenia or neutropenia. The increase in skin vascular permeability induced by leukotriene B4, a powerful neutrophil chemotactic agent, was also inhibited only by Ptx. On the other hand, the increase in skin vascular permeability induced by histamine was potentiated by both toxins. These data show that Ptx inhibits neutrophil-mediated inflammation in vivo and that this effect is dependent on the ADP-ribosyltransferase activity of the A protomer.

Full Text

The Full Text of this article is available as a PDF (316.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banga H. S., Walker R. K., Winberry L. K., Rittenhouse S. E. Pertussis toxin can activate human platelets. Comparative effects of holotoxin and its ADP-ribosylating S1 subunit. J Biol Chem. 1987 Nov 5;262(31):14871–14874. [PubMed] [Google Scholar]
  2. Becker E. L., Kermode J. C., Naccache P. H., Yassin R., Munoz J. J., Marsh M. L., Huang C. K., Sha'afi R. I. Pertussis toxin as a probe of neutrophil activation. Fed Proc. 1986 Jun;45(7):2151–2155. [PubMed] [Google Scholar]
  3. Ben-Baruch A., Michiel D. F., Oppenheim J. J. Signals and receptors involved in recruitment of inflammatory cells. J Biol Chem. 1995 May 19;270(20):11703–11706. doi: 10.1074/jbc.270.20.11703. [DOI] [PubMed] [Google Scholar]
  4. Bengtsson T., Särndahl E., Stendahl O., Andersson T. Involvement of GTP-binding proteins in actin polymerization in human neutrophils. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2921–2925. doi: 10.1073/pnas.87.8.2921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fruman D. A., Gamache D. A., Ernest M. J. Changes in inositol 1,4,5-trisphosphate mass in agonist-stimulated human neutrophils. Agents Actions. 1991 Sep;34(1-2):16–19. doi: 10.1007/BF01993225. [DOI] [PubMed] [Google Scholar]
  6. Hakomori S., Igarashi Y. Functional role of glycosphingolipids in cell recognition and signaling. J Biochem. 1995 Dec;118(6):1091–1103. doi: 10.1093/oxfordjournals.jbchem.a124992. [DOI] [PubMed] [Google Scholar]
  7. Linthicum D. S., Munoz J. J., Blaskett A. Acute experimental autoimmune encephalomyelitis in mice. I. Adjuvant action of Bordetella pertussis is due to vasoactive amine sensitization and increased vascular permeability of the central nervous system. Cell Immunol. 1982 Nov 1;73(2):299–310. doi: 10.1016/0008-8749(82)90457-9. [DOI] [PubMed] [Google Scholar]
  8. Marsili I., Pizza M., Giovannoni F., Volpini G., Bartalini M., Olivieri R., Rappuoli R., Nencioni L. Cellular pertussis vaccine containing a Bordetella pertussis strain that produces a nontoxic pertussis toxin molecule. Infect Immun. 1992 Mar;60(3):1150–1155. doi: 10.1128/iai.60.3.1150-1155.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McEver R. P. Leukocyte interactions mediated by selectins. Thromb Haemost. 1991 Jul 12;66(1):80–87. [PubMed] [Google Scholar]
  10. McEver R. P. Leukocyte-endothelial cell interactions. Curr Opin Cell Biol. 1992 Oct;4(5):840–849. doi: 10.1016/0955-0674(92)90109-p. [DOI] [PubMed] [Google Scholar]
  11. Meade B. D., Kind P. D., Ewell J. B., McGrath P. P., Manclark C. R. In vitro inhibition of murine macrophage migration by Bordetella pertussis lymphocytosis-promoting factor. Infect Immun. 1984 Sep;45(3):718–725. doi: 10.1128/iai.45.3.718-725.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meade B. D., Kind P. D., Manclark C. R. Lymphocytosis-promoting factor of Bordetella pertussis alters mononuclear phagocyte circulation and response to inflammation. Infect Immun. 1984 Dec;46(3):733–739. doi: 10.1128/iai.46.3.733-739.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Munoz J. J., Arai H., Bergman R. K., Sadowski P. L. Biological activities of crystalline pertussigen from Bordetella pertussis. Infect Immun. 1981 Sep;33(3):820–826. doi: 10.1128/iai.33.3.820-826.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Murphy P. M. The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol. 1994;12:593–633. doi: 10.1146/annurev.iy.12.040194.003113. [DOI] [PubMed] [Google Scholar]
  15. Nencioni L., Pizza M. G., Volpini G., De Magistris M. T., Giovannoni F., Rappuoli R. Properties of the B oligomer of pertussis toxin. Infect Immun. 1991 Dec;59(12):4732–4734. doi: 10.1128/iai.59.12.4732-4734.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nencioni L., Pizza M., Bugnoli M., De Magistris T., Di Tommaso A., Giovannoni F., Manetti R., Marsili I., Matteucci G., Nucci D. Characterization of genetically inactivated pertussis toxin mutants: candidates for a new vaccine against whooping cough. Infect Immun. 1990 May;58(5):1308–1315. doi: 10.1128/iai.58.5.1308-1315.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ohta H., Okajima F., Ui M. Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J Biol Chem. 1985 Dec 15;260(29):15771–15780. [PubMed] [Google Scholar]
  18. Olson L. C. Pertussis. Medicine (Baltimore) 1975 Nov;54(6):427–469. doi: 10.1097/00005792-197511000-00001. [DOI] [PubMed] [Google Scholar]
  19. Pizza M., Covacci A., Bartoloni A., Perugini M., Nencioni L., De Magistris M. T., Villa L., Nucci D., Manetti R., Bugnoli M. Mutants of pertussis toxin suitable for vaccine development. Science. 1989 Oct 27;246(4929):497–500. doi: 10.1126/science.2683073. [DOI] [PubMed] [Google Scholar]
  20. Rankin J. A., Sylvester I., Smith S., Yoshimura T., Leonard E. J. Macrophages cultured in vitro release leukotriene B4 and neutrophil attractant/activation protein (interleukin 8) sequentially in response to stimulation with lipopolysaccharide and zymosan. J Clin Invest. 1990 Nov;86(5):1556–1564. doi: 10.1172/JCI114875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rappuoli R., Podda A., Pizza M., Covacci A., Bartoloni A., de Magistris M. T., Nencioni L. Progress towards the development of new vaccines against whooping cough. Vaccine. 1992;10(14):1027–1032. doi: 10.1016/0264-410x(92)90112-w. [DOI] [PubMed] [Google Scholar]
  22. Rozdzinski E., Burnette W. N., Jones T., Mar V., Tuomanen E. Prokaryotic peptides that block leukocyte adherence to selectins. J Exp Med. 1993 Sep 1;178(3):917–924. doi: 10.1084/jem.178.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rozdzinski E., Jones T., Burnette W. N., Burroughs M., Tuomanen E. Antiinflammatory effects in experimental meningitis of prokaryotic peptides that mimic selectins. J Infect Dis. 1993 Dec;168(6):1422–1428. doi: 10.1093/infdis/168.6.1422. [DOI] [PubMed] [Google Scholar]
  24. Saukkonen K., Burnette W. N., Mar V. L., Masure H. R., Tuomanen E. I. Pertussis toxin has eukaryotic-like carbohydrate recognition domains. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):118–122. doi: 10.1073/pnas.89.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sindt K. A., Hewlett E. L., Redpath G. T., Rappuoli R., Gray L. S., Vandenberg S. R. Pertussis toxin activates platelets through an interaction with platelet glycoprotein Ib. Infect Immun. 1994 Aug;62(8):3108–3114. doi: 10.1128/iai.62.8.3108-3114.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tamura M., Nogimori K., Murai S., Yajima M., Ito K., Katada T., Ui M., Ishii S. Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry. 1982 Oct 26;21(22):5516–5522. doi: 10.1021/bi00265a021. [DOI] [PubMed] [Google Scholar]
  27. Thomazzi S. M., Souza M. H., Melo-Filho A. A., Hewlett E. L., Lima A. A., Ribeiro R. A. Pertussis toxin from Bordetella pertussis blocks neutrophil migration and neutrophil-dependent edema in response to inflammation. Braz J Med Biol Res. 1995 Jan;28(1):120–124. [PubMed] [Google Scholar]
  28. Wedmore C. V., Williams T. J. Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature. 1981 Feb 19;289(5799):646–650. doi: 10.1038/289646a0. [DOI] [PubMed] [Google Scholar]
  29. Zealey G. R., Loosmore S. M., Yacoob R. K., Cockle S. A., Herbert A. B., Miller L. D., Mackay N. J., Klein M. H. Construction of Bordetella pertussis strains that overproduce genetically inactivated pertussis toxin. Appl Environ Microbiol. 1992 Jan;58(1):208–214. doi: 10.1128/aem.58.1.208-214.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zimmerman G. A., Prescott S. M., McIntyre T. M. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today. 1992 Mar;13(3):93–100. doi: 10.1016/0167-5699(92)90149-2. [DOI] [PubMed] [Google Scholar]
  31. van't Wout J., Burnette W. N., Mar V. L., Rozdzinski E., Wright S. D., Tuomanen E. I. Role of carbohydrate recognition domains of pertussis toxin in adherence of Bordetella pertussis to human macrophages. Infect Immun. 1992 Aug;60(8):3303–3308. doi: 10.1128/iai.60.8.3303-3308.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES