Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Apr;65(4):1139–1146. doi: 10.1128/iai.65.4.1139-1146.1997

Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival.

E Broug-Holub 1, G B Toews 1, J F van Iwaarden 1, R M Strieter 1, S L Kunkel 1, R Paine 3rd 1, T J Standiford 1
PMCID: PMC175109  PMID: 9119443

Abstract

To study the in vivo role of alveolar macrophages (AM) in gram-negative bacterial pneumonia in mice, AM were eliminated by the intratracheal (i.t.) administration of dichloromethylene diphosphonate encapsulated liposomes. Subsequently, the AM-depleted mice were infected i.t. with 100 CFU of Klebsiella pneumoniae, and the effects of AM depletion on survival, bacterial clearance, and neutrophil (polymorphonuclear leukocyte [PMN]) recruitment were assessed. It was shown that depletion of AM decreases survival dramatically, with 100% lethality at day 3 postinfection, versus 100% long-term survival in the control group. This increased mortality was accompanied by 20- to 27- and 3- to 10-fold increases in the number of K. pneumoniae CFU in lung and plasma, respectively, compared to those in nondepleted animals. This decreased bacterial clearance was not due to an impaired PMN recruitment; on the contrary, the K. pneumoniae-induced PMN recruitment in AM-depleted lungs was sevenfold greater 48 h postinfection than that in control infected lungs. Together with an increased PMN infiltration, 3- and 10-fold increases in lung homogenate tumor necrosis factor alpha (TNF-alpha) and macrophage inflammatory protein 2 (MIP-2) levels, respectively, were measured. Neutralization of TNF-alpha or MIP-2, 2 h before infection, reduced the numbers of infiltrating PMN by 41.6 and 64.2%, respectively, indicating that these cytokines mediate PMN influx in infected lungs, rather then just being produced by the recruited PMN themselves. Our studies demonstrate, for the first time, the relative importance of the AM in the containment and clearance of bacteria in the setting of Klebsiella pneumonia.

Full Text

The Full Text of this article is available as a PDF (707.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelberg R. Macrophage inflammatory proteins MIP-1 and MIP-2 are involved in T cell-mediated neutrophil recruitment. J Leukoc Biol. 1992 Sep;52(3):303–306. doi: 10.1002/jlb.52.3.303. [DOI] [PubMed] [Google Scholar]
  2. Bakker-Woudenberg I. A., Lokerse A. F., ten Kate M. T., Mouton J. W., Woodle M. C., Storm G. Liposomes with prolonged blood circulation and selective localization in Klebsiella pneumoniae-infected lung tissue. J Infect Dis. 1993 Jul;168(1):164–171. doi: 10.1093/infdis/168.1.164. [DOI] [PubMed] [Google Scholar]
  3. Baldwin G. C., Fuller N. D., Roberts R. L., Ho D. D., Golde D. W. Granulocyte- and granulocyte-macrophage colony-stimulating factors enhance neutrophil cytotoxicity toward HIV-infected cells. Blood. 1989 Oct;74(5):1673–1677. [PubMed] [Google Scholar]
  4. Berg J. T., Lee S. T., Thepen T., Lee C. Y., Tsan M. F. Depletion of alveolar macrophages by liposome-encapsulated dichloromethylene diphosphonate. J Appl Physiol (1985) 1993 Jun;74(6):2812–2819. doi: 10.1152/jappl.1993.74.6.2812. [DOI] [PubMed] [Google Scholar]
  5. Cross A. S., Sadoff J. C., Kelly N., Bernton E., Gemski P. Pretreatment with recombinant murine tumor necrosis factor alpha/cachectin and murine interleukin 1 alpha protects mice from lethal bacterial infection. J Exp Med. 1989 Jun 1;169(6):2021–2027. doi: 10.1084/jem.169.6.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dularay B., Elson C. J., Clements-Jewery S., Damais C., Lando D. Recombinant human interleukin-1 beta primes human polymorphonuclear leukocytes for stimulus-induced myeloperoxidase release. J Leukoc Biol. 1990 Feb;47(2):158–163. doi: 10.1002/jlb.47.2.158. [DOI] [PubMed] [Google Scholar]
  7. Ellis M., Gupta S., Galant S., Hakim S., VandeVen C., Toy C., Cairo M. S. Impaired neutrophil function in patients with AIDS or AIDS-related complex: a comprehensive evaluation. J Infect Dis. 1988 Dec;158(6):1268–1276. doi: 10.1093/infdis/158.6.1268. [DOI] [PubMed] [Google Scholar]
  8. Feng L., Xia Y., Yoshimura T., Wilson C. B. Modulation of neutrophil influx in glomerulonephritis in the rat with anti-macrophage inflammatory protein-2 (MIP-2) antibody. J Clin Invest. 1995 Mar;95(3):1009–1017. doi: 10.1172/JCI117745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gordon J. R., Galli S. J. Release of both preformed and newly synthesized tumor necrosis factor alpha (TNF-alpha)/cachectin by mouse mast cells stimulated via the Fc epsilon RI. A mechanism for the sustained action of mast cell-derived TNF-alpha during IgE-dependent biological responses. J Exp Med. 1991 Jul 1;174(1):103–107. doi: 10.1084/jem.174.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greenberger M. J., Strieter R. M., Kunkel S. L., Danforth J. M., Laichalk L. L., McGillicuddy D. C., Standiford T. J. Neutralization of macrophage inflammatory protein-2 attenuates neutrophil recruitment and bacterial clearance in murine Klebsiella pneumonia. J Infect Dis. 1996 Jan;173(1):159–165. doi: 10.1093/infdis/173.1.159. [DOI] [PubMed] [Google Scholar]
  11. Hashimoto S., Pittet J. F., Hong K., Folkesson H., Bagby G., Kobzik L., Frevert C., Watanabe K., Tsurufuji S., Wiener-Kronish J. Depletion of alveolar macrophages decreases neutrophil chemotaxis to Pseudomonas airspace infections. Am J Physiol. 1996 May;270(5 Pt 1):L819–L828. doi: 10.1152/ajplung.1996.270.5.L819. [DOI] [PubMed] [Google Scholar]
  12. Havell E. A. Evidence that tumor necrosis factor has an important role in antibacterial resistance. J Immunol. 1989 Nov 1;143(9):2894–2899. [PubMed] [Google Scholar]
  13. Holt P. G., Oliver J., Bilyk N., McMenamin C., McMenamin P. G., Kraal G., Thepen T. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med. 1993 Feb 1;177(2):397–407. doi: 10.1084/jem.177.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kawabe T., Isobe K. I., Hasegawa Y., Nakashima I., Shimokata K. Immunosuppressive activity induced by nitric oxide in culture supernatant of activated rat alveolar macrophages. Immunology. 1992 May;76(1):72–78. [PMC free article] [PubMed] [Google Scholar]
  15. Kharazmi A., Nielsen H., Rechnitzer C., Bendtzen K. Interleukin 6 primes human neutrophil and monocyte oxidative burst response. Immunol Lett. 1989 May;21(2):177–184. doi: 10.1016/0165-2478(89)90056-4. [DOI] [PubMed] [Google Scholar]
  16. Kips J. C., Tavernier J., Pauwels R. A. Tumor necrosis factor causes bronchial hyperresponsiveness in rats. Am Rev Respir Dis. 1992 Feb;145(2 Pt 1):332–336. doi: 10.1164/ajrccm/145.2_Pt_1.332. [DOI] [PubMed] [Google Scholar]
  17. Laichalk L. L., Kunkel S. L., Strieter R. M., Danforth J. M., Bailie M. B., Standiford T. J. Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia. Infect Immun. 1996 Dec;64(12):5211–5218. doi: 10.1128/iai.64.12.5211-5218.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McColm A. A., Shelley E., Ryan D. M., Acred P. Evaluation of ceftazidime in experimental Klebsiella pneumoniae pneumonia: comparison with other antibiotics and measurement of its penetration into respiratory tissues and secretions. J Antimicrob Chemother. 1986 Nov;18(5):599–608. doi: 10.1093/jac/18.5.599. [DOI] [PubMed] [Google Scholar]
  19. Ming W. J., Bersani L., Mantovani A. Tumor necrosis factor is chemotactic for monocytes and polymorphonuclear leukocytes. J Immunol. 1987 Mar 1;138(5):1469–1474. [PubMed] [Google Scholar]
  20. Monick M., Glazier J., Hunninghake G. W. Human alveolar macrophages suppress interleukin-1 (IL-1) activity via the secretion of prostaglandin E2. Am Rev Respir Dis. 1987 Jan;135(1):72–77. doi: 10.1164/arrd.1987.135.1.72. [DOI] [PubMed] [Google Scholar]
  21. Moser R., Schleiffenbaum B., Groscurth P., Fehr J. Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage. J Clin Invest. 1989 Feb;83(2):444–455. doi: 10.1172/JCI113903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mulligan M. S., Vaporciyan A. A., Miyasaka M., Tamatani T., Ward P. A. Tumor necrosis factor alpha regulates in vivo intrapulmonary expression of ICAM-1. Am J Pathol. 1993 Jun;142(6):1739–1749. [PMC free article] [PubMed] [Google Scholar]
  23. Mulligan M. S., Vaporciyan A. A., Warner R. L., Jones M. L., Foreman K. E., Miyasaka M., Todd R. F., 3rd, Ward P. A. Compartmentalized roles for leukocytic adhesion molecules in lung inflammatory injury. J Immunol. 1995 Feb 1;154(3):1350–1363. [PubMed] [Google Scholar]
  24. Nakane A., Minagawa T., Kato K. Endogenous tumor necrosis factor (cachectin) is essential to host resistance against Listeria monocytogenes infection. Infect Immun. 1988 Oct;56(10):2563–2569. doi: 10.1128/iai.56.10.2563-2569.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Paine R., 3rd, Rolfe M. W., Standiford T. J., Burdick M. D., Rollins B. J., Strieter R. M. MCP-1 expression by rat type II alveolar epithelial cells in primary culture. J Immunol. 1993 May 15;150(10):4561–4570. [PubMed] [Google Scholar]
  27. Peppel K., Crawford D., Beutler B. A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J Exp Med. 1991 Dec 1;174(6):1483–1489. doi: 10.1084/jem.174.6.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Qian Q., Jutila M. A., Van Rooijen N., Cutler J. E. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J Immunol. 1994 May 15;152(10):5000–5008. [PubMed] [Google Scholar]
  29. Remick D. G., Strieter R. M., Eskandari M. K., Nguyen D. T., Genord M. A., Raiford C. L., Kunkel S. L. Role of tumor necrosis factor-alpha in lipopolysaccharide-induced pathologic alterations. Am J Pathol. 1990 Jan;136(1):49–60. [PMC free article] [PubMed] [Google Scholar]
  30. Rich E. A., Cooper C., Toossi Z., Leonard M. L., Stucky R. M., Wiblin R. T., Ellner J. J. Requirement for cell-to-cell contact for the immunosuppressive activity of human alveolar macrophages. Am J Respir Cell Mol Biol. 1991 Mar;4(3):287–294. doi: 10.1165/ajrcmb/4.3.287. [DOI] [PubMed] [Google Scholar]
  31. Roilides E., Uhlig K., Venzon D., Pizzo P. A., Walsh T. J. Prevention of corticosteroid-induced suppression of human polymorphonuclear leukocyte-induced damage of Aspergillus fumigatus hyphae by granulocyte colony-stimulating factor and gamma interferon. Infect Immun. 1993 Nov;61(11):4870–4877. doi: 10.1128/iai.61.11.4870-4877.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roth M. D., Golub S. H. Human pulmonary macrophages utilize prostaglandins and transforming growth factor beta 1 to suppress lymphocyte activation. J Leukoc Biol. 1993 Apr;53(4):366–371. doi: 10.1002/jlb.53.4.366. [DOI] [PubMed] [Google Scholar]
  33. Schmal H., Shanley T. P., Jones M. L., Friedl H. P., Ward P. A. Role for macrophage inflammatory protein-2 in lipopolysaccharide-induced lung injury in rats. J Immunol. 1996 Mar 1;156(5):1963–1972. [PubMed] [Google Scholar]
  34. Sibille Y., Reynolds H. Y. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis. 1990 Feb;141(2):471–501. doi: 10.1164/ajrccm/141.2.471. [DOI] [PubMed] [Google Scholar]
  35. Smart S. J., Casale T. B. Pulmonary epithelial cells facilitate TNF-alpha-induced neutrophil chemotaxis. A role for cytokine networking. J Immunol. 1994 Apr 15;152(8):4087–4094. [PubMed] [Google Scholar]
  36. Standiford T. J., Kunkel S. L., Basha M. A., Chensue S. W., Lynch J. P., 3rd, Toews G. B., Westwick J., Strieter R. M. Interleukin-8 gene expression by a pulmonary epithelial cell line. A model for cytokine networks in the lung. J Clin Invest. 1990 Dec;86(6):1945–1953. doi: 10.1172/JCI114928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Standiford T. J., Kunkel S. L., Phan S. H., Rollins B. J., Strieter R. M. Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem. 1991 May 25;266(15):9912–9918. [PubMed] [Google Scholar]
  38. Strieter R. M., Kunkel S. L., Burdick M. D., Lincoln P. M., Walz A. The detection of a novel neutrophil-activating peptide (ENA-78) using a sensitive ELISA. Immunol Invest. 1992 Oct;21(6):589–596. doi: 10.3109/08820139209069393. [DOI] [PubMed] [Google Scholar]
  39. Strunk R. C., Eidlen D. M., Mason R. J. Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways. J Clin Invest. 1988 May;81(5):1419–1426. doi: 10.1172/JCI113472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thepen T., McMenamin C., Girn B., Kraal G., Holt P. G. Regulation of IgE production in pre-sensitized animals: in vivo elimination of alveolar macrophages preferentially increases IgE responses to inhaled allergen. Clin Exp Allergy. 1992 Dec;22(12):1107–1114. doi: 10.1111/j.1365-2222.1992.tb00137.x. [DOI] [PubMed] [Google Scholar]
  41. Thepen T., McMenamin C., Oliver J., Kraal G., Holt P. G. Regulation of immune response to inhaled antigen by alveolar macrophages: differential effects of in vivo alveolar macrophage elimination on the induction of tolerance vs. immunity. Eur J Immunol. 1991 Nov;21(11):2845–2850. doi: 10.1002/eji.1830211128. [DOI] [PubMed] [Google Scholar]
  42. Thepen T., Van Rooijen N., Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med. 1989 Aug 1;170(2):499–509. doi: 10.1084/jem.170.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ulich T. R., Howard S. C., Remick D. G., Wittwer A., Yi E. S., Yin S., Guo K., Welply J. K., Williams J. H. Intratracheal administration of endotoxin and cytokines. VI. Antiserum to CINC inhibits acute inflammation. Am J Physiol. 1995 Feb;268(2 Pt 1):L245–L250. doi: 10.1152/ajplung.1995.268.2.L245. [DOI] [PubMed] [Google Scholar]
  44. Ulich T. R., Howard S. C., Remick D. G., Yi E. S., Collins T., Guo K., Yin S., Keene J. L., Schmuke J. J., Steininger C. N. Intratracheal administration of endotoxin and cytokines: VIII. LPS induces E-selectin expression; anti-E-selectin and soluble E-selectin inhibit acute inflammation. Inflammation. 1994 Aug;18(4):389–398. doi: 10.1007/BF01534436. [DOI] [PubMed] [Google Scholar]
  45. Ulich T. R., Watson L. R., Yin S. M., Guo K. Z., Wang P., Thang H., del Castillo J. The intratracheal administration of endotoxin and cytokines. I. Characterization of LPS-induced IL-1 and TNF mRNA expression and the LPS-, IL-1-, and TNF-induced inflammatory infiltrate. Am J Pathol. 1991 Jun;138(6):1485–1496. [PMC free article] [PubMed] [Google Scholar]
  46. Ulich T. R., Yin S., Remick D. G., Russell D., Eisenberg S. P., Kohno T. Intratracheal administration of endotoxin and cytokines. IV. The soluble tumor necrosis factor receptor type I inhibits acute inflammation. Am J Pathol. 1993 May;142(5):1335–1338. [PMC free article] [PubMed] [Google Scholar]
  47. Van Rooijen N., Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods. 1994 Sep 14;174(1-2):83–93. doi: 10.1016/0022-1759(94)90012-4. [DOI] [PubMed] [Google Scholar]
  48. Van Rooijen N. The liposome-mediated macrophage 'suicide' technique. J Immunol Methods. 1989 Nov 13;124(1):1–6. doi: 10.1016/0022-1759(89)90178-6. [DOI] [PubMed] [Google Scholar]
  49. VanOtteren G. M., Strieter R. M., Kunkel S. L., Paine R., 3rd, Greenberger M. J., Danforth J. M., Burdick M. D., Standiford T. J. Compartmentalized expression of RANTES in a murine model of endotoxemia. J Immunol. 1995 Feb 15;154(4):1900–1908. [PubMed] [Google Scholar]
  50. Williams D. M., Magee D. M., Bonewald L. F., Smith J. G., Bleicker C. A., Byrne G. I., Schachter J. A role in vivo for tumor necrosis factor alpha in host defense against Chlamydia trachomatis. Infect Immun. 1990 Jun;58(6):1572–1576. doi: 10.1128/iai.58.6.1572-1576.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Windsor A. C., Walsh C. J., Mullen P. G., Cook D. J., Fisher B. J., Blocher C. R., Leeper-Woodford S. K., Sugerman H. J., Fowler A. A., 3rd Tumor necrosis factor-alpha blockade prevents neutrophil CD18 receptor upregulation and attenuates acute lung injury in porcine sepsis without inhibition of neutrophil oxygen radical generation. J Clin Invest. 1993 Apr;91(4):1459–1468. doi: 10.1172/JCI116351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wolpe S. D., Sherry B., Juers D., Davatelis G., Yurt R. W., Cerami A. Identification and characterization of macrophage inflammatory protein 2. Proc Natl Acad Sci U S A. 1989 Jan;86(2):612–616. doi: 10.1073/pnas.86.2.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Xing Z., Jordana M., Kirpalani H., Driscoll K. E., Schall T. J., Gauldie J. Cytokine expression by neutrophils and macrophages in vivo: endotoxin induces tumor necrosis factor-alpha, macrophage inflammatory protein-2, interleukin-1 beta, and interleukin-6 but not RANTES or transforming growth factor-beta 1 mRNA expression in acute lung inflammation. Am J Respir Cell Mol Biol. 1994 Feb;10(2):148–153. doi: 10.1165/ajrcmb.10.2.8110470. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES