Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Apr;65(4):1152–1157. doi: 10.1128/iai.65.4.1152-1157.1997

Effects of essential fatty acid deficiency on prostaglandin E2 production and cell-mediated immunity in a mouse model of leprosy.

L B Adams 1, T P Gillis 1, D H Hwang 1, J L Krahenbuhl 1
PMCID: PMC175111  PMID: 9119445

Abstract

Results from animal and in vitro studies suggest that essential fatty acid (EFA) deficiency enhances cell-mediated immunity by reducing production of prostaglandins with immunosuppressive actions. However, direct experimental evidence that EFA deficiency enhances T-lymphocyte function in vivo has not been obtained. In this study, athymic (nu/nu) mice were infected in the footpads with Mycobacterium leprae and fed a linoleic acid-free diet. These mice, and infected nu/nu mice on control diets, were given an adoptive transfer of M. leprae-primed, T-cell-enriched lymphocytes. After 2 weeks, M. leprae bacilli were harvested from the recipient mice and bacterial viability was determined by the BACTEC system. M. leprae recovered from recipient mice fed control diets displayed little reduction in metabolic activity. In contrast, M. leprae from recipient mice fed the EFA-deficient (EFAD) diet exhibited markedly reduced viability. In vitro, donor cells from M. leprae-primed mice secreted elevated levels of gamma interferon upon exposure to the bacilli. These cells also exhibited an enhanced proliferative response, which was reduced by exogenous prostaglandin E2 (PGE2). In addition, M. leprae-infected granuloma macrophages (Mphi) from EFAD recipient nu/nu mice secreted significantly less PGE2 than granuloma Mphi from mice on control diets. These data suggest that enhanced levels of Mphi-generated PGE2, induced by M. leprae or its constituents, could act as an endogenous negative modulator of the immune response occurring in the microenvironment of the lepromatous granuloma.

Full Text

The Full Text of this article is available as a PDF (201.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L. B., Franzblau S. G., Vavrin Z., Hibbs J. B., Jr, Krahenbuhl J. L. L-arginine-dependent macrophage effector functions inhibit metabolic activity of Mycobacterium leprae. J Immunol. 1991 Sep 1;147(5):1642–1646. [PubMed] [Google Scholar]
  2. Apt A. S., Kramnik I. B., Moroz A. M. Regulation of T-cell proliferative responses by cells from solid lung tissue of M. tuberculosis-infected mice. Immunology. 1991 Jun;73(2):173–179. [PMC free article] [PubMed] [Google Scholar]
  3. Betz M., Fox B. S. Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J Immunol. 1991 Jan 1;146(1):108–113. [PubMed] [Google Scholar]
  4. Bonta I. L., Parnham M. J., Adolfs M. J. Reduced exudation and increased tissue proliferation during chronic inflammation in rats deprived of endogenous prostaglandin precursors. Prostaglandins. 1977 Aug;14(2):295–307. doi: 10.1016/0090-6980(77)90175-7. [DOI] [PubMed] [Google Scholar]
  5. Boudreau M. D., Chanmugam P. S., Hart S. B., Lee S. H., Hwang D. H. Lack of dose response by dietary n-3 fatty acids at a constant ratio of n-3 to n-6 fatty acids in suppressing eicosanoid biosynthesis from arachidonic acid. Am J Clin Nutr. 1991 Jul;54(1):111–117. doi: 10.1093/ajcn/54.1.111. [DOI] [PubMed] [Google Scholar]
  6. Chehl S., Ruby J., Job C. K., Hastings R. C. The growth of Mycobacterium leprae in nude mice. Lepr Rev. 1983 Dec;54(4):283–304. doi: 10.5935/0305-7518.19830035. [DOI] [PubMed] [Google Scholar]
  7. Converse P. J., Haines V. L., Wondimu A., Craig L. E., Meyers W. M. Infection of SCID mice with Mycobacterium leprae and control with antigen-activated "immune" human peripheral blood mononuclear cells. Infect Immun. 1995 Mar;63(3):1047–1054. doi: 10.1128/iai.63.3.1047-1054.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edwards C. K., 3rd, Hedegaard H. B., Zlotnik A., Gangadharam P. R., Johnston R. B., Jr, Pabst M. J. Chronic infection due to Mycobacterium intracellulare in mice: association with macrophage release of prostaglandin E2 and reversal by injection of indomethacin, muramyl dipeptide, or interferon-gamma. J Immunol. 1986 Mar 1;136(5):1820–1827. [PubMed] [Google Scholar]
  9. Ellner J. J., Spagnuolo P. J. Suppression of antigen and mitogen induced human T lymphocyte DNA synthesis by bacterial lipopolysaccharide: mediation by monocyte activation and production of prostaglandins. J Immunol. 1979 Dec;123(6):2689–2695. [PubMed] [Google Scholar]
  10. Ellner J. J., Wallis R. S. Immunologic aspects of mycobacterial infections. Rev Infect Dis. 1989 Mar-Apr;11 (Suppl 2):S455–S459. doi: 10.1093/clinids/11.supplement_2.s455. [DOI] [PubMed] [Google Scholar]
  11. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  12. Franzblau S. G. Drug susceptibility testing of Mycobacterium leprae in the BACTEC 460 system. Antimicrob Agents Chemother. 1989 Dec;33(12):2115–2117. doi: 10.1128/aac.33.12.2115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Godal T., Myklestad B., Samuel D. R., Myrvang B. Characterization of the cellular immune defect in lepromatous leprosy: a specific lack of circulating Mycobacterium leprae-reactive lymphocytes. Clin Exp Immunol. 1971 Dec;9(6):821–831. [PMC free article] [PubMed] [Google Scholar]
  14. HOLMAN R. T. The ratio of trienoic: tetraenoic acids in tissue lipids as a measure of essential fatty acid requirement. J Nutr. 1960 Mar;70:405–410. doi: 10.1093/jn/70.3.405. [DOI] [PubMed] [Google Scholar]
  15. Hwang D. H., Carroll A. E. Decreased formation of porstaglandins derived from arachidonic acid by dietary linolenate in rats. Am J Clin Nutr. 1980 Mar;33(3):590–597. doi: 10.1093/ajcn/33.3.590. [DOI] [PubMed] [Google Scholar]
  16. Hwang D. Essential fatty acids and immune response. FASEB J. 1989 Jul;3(9):2052–2061. doi: 10.1096/fasebj.3.9.2501132. [DOI] [PubMed] [Google Scholar]
  17. Kohsaka K., Mori T., Ito T. Lepromatoid lesion developed in nude mouse inoculated with Mycobacterium leprae--animal transmission of leprosy. Repura. 1976 Jul-Sep;45(3):177–187. doi: 10.5025/hansen1930.45.3_177. [DOI] [PubMed] [Google Scholar]
  18. Krahenbuhl J. L., Sibley L. D., Chae G. T. Gamma interferon in experimental leprosy. Diagn Microbiol Infect Dis. 1990 Sep-Oct;13(5):405–409. doi: 10.1016/0732-8893(90)90011-j. [DOI] [PubMed] [Google Scholar]
  19. Lefkowith J. B. Essential fatty acid deficiency: probing the role of arachidonate in biology. Adv Prostaglandin Thromboxane Leukot Res. 1990;20:224–231. [PubMed] [Google Scholar]
  20. Lefkowith J. B., Flippo V., Sprecher H., Needleman P. Paradoxical conservation of cardiac and renal arachidonate content in essential fatty acid deficiency. J Biol Chem. 1985 Dec 15;260(29):15736–15744. [PubMed] [Google Scholar]
  21. Lowe C., Brett S. J., Rees R. J. Adoptive cell transfer of resistance to Mycobacterium leprae infections in mice. Clin Exp Immunol. 1985 Aug;61(2):336–342. [PMC free article] [PubMed] [Google Scholar]
  22. Makonkawkeyoon S., Kasinrerk W. In vitro suppression of interleukin 2 production by Mycobacterium leprae antigen. Clin Exp Immunol. 1989 Jun;76(3):398–403. [PMC free article] [PubMed] [Google Scholar]
  23. Mehra V., Mason L. H., Fields J. P., Bloom B. R. Lepromin-induced suppressor cells in patients with leprosy. J Immunol. 1979 Oct;123(4):1813–1817. [PubMed] [Google Scholar]
  24. Mertin J., Hunt R. Influence of polyunsaturated fatty acids on survival of skin allografts and tumor incidence in mice. Proc Natl Acad Sci U S A. 1976 Mar;73(3):928–931. doi: 10.1073/pnas.73.3.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Minakuchi R., Wacholtz M. C., Davis L. S., Lipsky P. E. Delineation of the mechanism of inhibition of human T cell activation by PGE2. J Immunol. 1990 Oct 15;145(8):2616–2625. [PubMed] [Google Scholar]
  26. Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nelson E. E., Wong L., Uyemura K., Rea T. H., Modlin R. L. Lepromin-induced suppressor cells in lepromatous leprosy. Cell Immunol. 1987 Jan;104(1):99–104. doi: 10.1016/0008-8749(87)90010-4. [DOI] [PubMed] [Google Scholar]
  28. Ottenhoff T. H., Elferink D. G., Klatser P. R., de Vries R. R. Cloned suppressor T cells from a lepromatous leprosy patient suppress Mycobacterium leprae reactive helper T cells. 1986 Jul 31-Aug 6Nature. 322(6078):462–464. doi: 10.1038/322462a0. [DOI] [PubMed] [Google Scholar]
  29. Pace J. L., Russell S. W., Torres B. A., Johnson H. M., Gray P. W. Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing. J Immunol. 1983 May;130(5):2011–2013. [PubMed] [Google Scholar]
  30. Ramasesh N., Adams L. B., Franzblau S. G., Krahenbuhl J. L. Effects of activated macrophages on Mycobacterium leprae. Infect Immun. 1991 Sep;59(9):2864–2869. doi: 10.1128/iai.59.9.2864-2869.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ridel P. R., Jamet P., Robin Y., Bach M. A. Interleukin-1 released by blood-monocyte-derived macrophages from patients with leprosy. Infect Immun. 1986 Apr;52(1):303–308. doi: 10.1128/iai.52.1.303-308.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ridley D. S., Jopling W. H. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966 Jul-Sep;34(3):255–273. [PubMed] [Google Scholar]
  33. Saha B., Das G., Vohra H., Ganguly N. K., Mishra G. C. Macrophage-T cell interaction in experimental mycobacterial infection. Selective regulation of co-stimulatory molecules on Mycobacterium-infected macrophages and its implication in the suppression of cell-mediated immune response. Eur J Immunol. 1994 Nov;24(11):2618–2624. doi: 10.1002/eji.1830241108. [DOI] [PubMed] [Google Scholar]
  34. Salgame P. R., Mahadevan P. R., Antia N. H. Mechanism of immunosuppression in leprosy: presence of suppressor factor(s) from macrophages of lepromatous patients. Infect Immun. 1983 Jun;40(3):1119–1126. doi: 10.1128/iai.40.3.1119-1126.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Santos C. F., Silva M. E., Silva M. E., Silva M. E., Nicoli J. R., Crocco-Afonso L. C., Santos J. E., Bambirra E. A., Vieira E. C. Effect of an essential fatty acid deficient diet on experimental infection with Trypanosoma cruzi in germfree and conventional mice. Braz J Med Biol Res. 1992;25(8):795–803. [PubMed] [Google Scholar]
  36. Sathish M., Bhutani L. K., Sharma A. K., Nath I. Monocyte-derived soluble suppressor factor(s) in patients with lepromatous leprosy. Infect Immun. 1983 Dec;42(3):890–899. doi: 10.1128/iai.42.3.890-899.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schleifer K. W., Mansfield J. M. Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. J Immunol. 1993 Nov 15;151(10):5492–5503. [PubMed] [Google Scholar]
  38. Shannon E. J., Chehl S., Job C. K., Hastings R. C. Adoptively transferred reactivity to M. leprae in nude mice infected with M. leprae. Clin Exp Immunol. 1987 Oct;70(1):143–151. [PMC free article] [PubMed] [Google Scholar]
  39. Shepard C. C., McRae D. H. A method for counting acid-fast bacteria. Int J Lepr Other Mycobact Dis. 1968 Jan-Mar;36(1):78–82. [PubMed] [Google Scholar]
  40. Sibley L. D., Adams L. B., Fukutomi Y., Krahenbuhl J. L. Tumor necrosis factor-alpha triggers antitoxoplasmal activity of IFN-gamma primed macrophages. J Immunol. 1991 Oct 1;147(7):2340–2345. [PubMed] [Google Scholar]
  41. Sibley L. D., Krahenbuhl J. L. Defective activation of granuloma macrophages from Mycobacterium leprae-infected nude mice. J Leukoc Biol. 1988 Jan;43(1):60–66. doi: 10.1002/jlb.43.1.60. [DOI] [PubMed] [Google Scholar]
  42. Sibley L. D., Krahenbuhl J. L. Induction of unresponsiveness to gamma interferon in macrophages infected with Mycobacterium leprae. Infect Immun. 1988 Aug;56(8):1912–1919. doi: 10.1128/iai.56.8.1912-1919.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sibley L. D., Krahenbuhl J. L. Mycobacterium leprae-burdened macrophages are refractory to activation by gamma interferon. Infect Immun. 1987 Feb;55(2):446–450. doi: 10.1128/iai.55.2.446-450.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sieling P. A., Abrams J. S., Yamamura M., Salgame P., Bloom B. R., Rea T. H., Modlin R. L. Immunosuppressive roles for IL-10 and IL-4 in human infection. In vitro modulation of T cell responses in leprosy. J Immunol. 1993 Jun 15;150(12):5501–5510. [PubMed] [Google Scholar]
  45. Sigal E. The molecular biology of mammalian arachidonic acid metabolism. Am J Physiol. 1991 Feb;260(2 Pt 1):L13–L28. doi: 10.1152/ajplung.1991.260.2.L13. [DOI] [PubMed] [Google Scholar]
  46. Stackpoole A., Mertin J. The effect of prostaglandin precursors in in vivo models of cell-mediated immunity. Prog Lipid Res. 1981;20:649–654. doi: 10.1016/0163-7827(81)90120-x. [DOI] [PubMed] [Google Scholar]
  47. Tomioka H., Saito H. Characterization of immunosuppressive functions of murine peritoneal macrophages induced with various agents. J Leukoc Biol. 1992 Jan;51(1):24–31. doi: 10.1002/jlb.51.1.24. [DOI] [PubMed] [Google Scholar]
  48. WATERS M. F., REES R. J. Changes in the morphology of Mycobacterium leprae in patients under treatment. Int J Lepr. 1962 Jul-Sep;30:266–277. [PubMed] [Google Scholar]
  49. Weinberg J. B., Chapman H. A., Jr, Hibbs J. B., Jr Characterization of the effects of endotoxin on macrophage tumor cell killing. J Immunol. 1978 Jul;121(1):72–80. [PubMed] [Google Scholar]
  50. Yuan S., Tan P. L., Skinner M. A. The effect of prostaglandin E2 and indomethacin on the cytotoxic response to mycobacterial antigens. Int J Immunopharmacol. 1994 Jul;16(7):525–531. doi: 10.1016/0192-0561(94)90104-x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES