Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 2002 May;86(5):322–324. doi: 10.1136/adc.86.5.322

In sickness and in health: the importance of translational regulation

P Reynolds 1
PMCID: PMC1751117  PMID: 11970919

Full Text

The Full Text of this article is available as a PDF (82.2 KB).

Figure 1 .

Figure 1

Schematic representation of how mRNA translation can be controlled.

Figure 2 .

Figure 2

The opposing coordinated translational regulation of ferritin and transferrin receptor

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carballo E., Lai W. S., Blackshear P. J. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood. 2000 Mar 15;95(6):1891–1899. [PubMed] [Google Scholar]
  2. Cazzola M., Skoda R. C. Translational pathophysiology: a novel molecular mechanism of human disease. Blood. 2000 Jun 1;95(11):3280–3288. [PubMed] [Google Scholar]
  3. Chan L. N., Gerhardt E. M. Transferrin receptor gene is hyperexpressed and transcriptionally regulated in differentiating erythroid cells. J Biol Chem. 1992 Apr 25;267(12):8254–8259. [PubMed] [Google Scholar]
  4. Girelli D., Olivieri O., De Franceschi L., Corrocher R., Bergamaschi G., Cazzola M. A linkage between hereditary hyperferritinaemia not related to iron overload and autosomal dominant congenital cataract. Br J Haematol. 1995 Aug;90(4):931–934. doi: 10.1111/j.1365-2141.1995.tb05218.x. [DOI] [PubMed] [Google Scholar]
  5. Gray N. K., Wickens M. Control of translation initiation in animals. Annu Rev Cell Dev Biol. 1998;14:399–458. doi: 10.1146/annurev.cellbio.14.1.399. [DOI] [PubMed] [Google Scholar]
  6. Hentze M. W., Kühn L. C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8175–8182. doi: 10.1073/pnas.93.16.8175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Klausner R. D., Rouault T. A., Harford J. B. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell. 1993 Jan 15;72(1):19–28. doi: 10.1016/0092-8674(93)90046-s. [DOI] [PubMed] [Google Scholar]
  8. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nathan C. A., Carter P., Liu L., Li B. D., Abreo F., Tudor A., Zimmer S. G., De Benedetti A. Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas. Oncogene. 1997 Aug 28;15(9):1087–1094. doi: 10.1038/sj.onc.1201272. [DOI] [PubMed] [Google Scholar]
  10. Pain V. M. Initiation of protein synthesis in eukaryotic cells. Eur J Biochem. 1996 Mar 15;236(3):747–771. doi: 10.1111/j.1432-1033.1996.00747.x. [DOI] [PubMed] [Google Scholar]
  11. Schaeffer C., Bardoni B., Mandel J. L., Ehresmann B., Ehresmann C., Moine H. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J. 2001 Sep 3;20(17):4803–4813. doi: 10.1093/emboj/20.17.4803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Semenza G. L. Transcriptional regulation of gene expression: mechanisms and pathophysiology. Hum Mutat. 1994;3(3):180–199. doi: 10.1002/humu.1380030304. [DOI] [PubMed] [Google Scholar]
  13. Tassone F., Hagerman R. J., Taylor A. K., Hagerman P. J. A majority of fragile X males with methylated, full mutation alleles have significant levels of FMR1 messenger RNA. J Med Genet. 2001 Jul;38(7):453–456. doi: 10.1136/jmg.38.7.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., Smith H. O., Yandell M., Evans C. A., Holt R. A. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
  15. Wiestner A., Schlemper R. J., van der Maas A. P., Skoda R. C. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat Genet. 1998 Jan;18(1):49–52. doi: 10.1038/ng0198-49. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES