Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Apr;65(4):1228–1236. doi: 10.1128/iai.65.4.1228-1236.1997

Complement-mediated serum sensitivity among spirochetes that cause Lyme disease.

A P van Dam 1, A Oei 1, R Jaspars 1, C Fijen 1, B Wilske 1, L Spanjaard 1, J Dankert 1
PMCID: PMC175122  PMID: 9119456

Abstract

Borrelia burgdorferi-related isolates were tested for their sensitivity to normal human serum (NHS) and their ability to activate complement. By dark-field microscopy, electron microscopy, and subsurface plating, it was shown that exposure of a Borrelia garinii isolate to 10% or more NHS resulted in immobilization, blebbing, and killing of the spirochetes. These effects were mediated by complement, since they were not seen after heat treatment of NHS, in the presence of EDTA, or in an agammaglobulinemic serum. All seven B. garinii type 5 or 6 and all four VS116/M19 strains were serum sensitive, whereas all eight Borrelia afzelii, five of eight B. garinii type 4, and three of seven B. burgdorferi sensu stricto isolates were serum resistant. The other isolates were partially serum sensitive. Four serum-sensitive B. garinii isolates had been isolated from human cerebrospinal fluid. Most likely, activation of both the alternative pathway and the classical pathway of complement was involved, since bactericidal activity was diminished in properdin-deficient sera as well as in a C1q-depleted serum and in a C4-deficient serum. Bactericidal activity could be restored when a serum lacking C1q or C4 was mixed with a properdin-deficient serum. Isolates with various genetic backgrounds were equally able to activate C3 as measured by enzyme-linked immunosorbent assay. In the presence of Mg-EGTA, C3 was activated by all isolates after exposure to > or = 10% NHS. This study shows that B. burgdorferi-related spirochetes can be either serum sensitive or serum resistant in vitro and that this characteristic is associated with their genetic background.

Full Text

The Full Text of this article is available as a PDF (849.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthonissen F. M., De Kesel M., Hoet P. P., Bigaignon G. H. Evidence for the involvement of different genospecies of Borrelia in the clinical outcome of Lyme disease in Belgium. Res Microbiol. 1994 May;145(4):327–331. doi: 10.1016/0923-2508(94)90187-2. [DOI] [PubMed] [Google Scholar]
  2. Assous M. V., Postic D., Paul G., Névot P., Baranton G. Western blot analysis of sera from Lyme borreliosis patients according to the genomic species of the Borrelia strains used as antigens. Eur J Clin Microbiol Infect Dis. 1993 Apr;12(4):261–268. doi: 10.1007/BF01967256. [DOI] [PubMed] [Google Scholar]
  3. Aydintug M. K., Gu Y., Philipp M. T. Borrelia burgdorferi antigens that are targeted by antibody-dependent, complement-mediated killing in the rhesus monkey. Infect Immun. 1994 Nov;62(11):4929–4937. doi: 10.1128/iai.62.11.4929-4937.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balmelli T., Piffaretti J. C. Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res Microbiol. 1995 May;146(4):329–340. doi: 10.1016/0923-2508(96)81056-4. [DOI] [PubMed] [Google Scholar]
  5. Barbour A. G., Heiland R. A., Howe T. R. Heterogeneity of major proteins in Lyme disease borreliae: a molecular analysis of North American and European isolates. J Infect Dis. 1985 Sep;152(3):478–484. doi: 10.1093/infdis/152.3.478. [DOI] [PubMed] [Google Scholar]
  6. Barthold S. W., de Souza M. S., Janotka J. L., Smith A. L., Persing D. H. Chronic Lyme borreliosis in the laboratory mouse. Am J Pathol. 1993 Sep;143(3):959–971. [PMC free article] [PubMed] [Google Scholar]
  7. Benach J. L., Bosler E. M., Hanrahan J. P., Coleman J. L., Habicht G. S., Bast T. F., Cameron D. J., Ziegler J. L., Barbour A. G., Burgdorfer W. Spirochetes isolated from the blood of two patients with Lyme disease. N Engl J Med. 1983 Mar 31;308(13):740–742. doi: 10.1056/NEJM198303313081302. [DOI] [PubMed] [Google Scholar]
  8. Bhakdi S., Fassbender W., Hugo F., Carreno M. P., Berstecher C., Malasit P., Kazatchkine M. D. Relative inefficiency of terminal complement activation. J Immunol. 1988 Nov 1;141(9):3117–3122. [PubMed] [Google Scholar]
  9. Bockenstedt L. K., Barthold S., Deponte K., Marcantonio N., Kantor F. S. Borrelia burgdorferi infection and immunity in mice deficient in the fifth component of complement. Infect Immun. 1993 May;61(5):2104–2107. doi: 10.1128/iai.61.5.2104-2107.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brade V., Kleber I., Acker G. Differences of two Borrelia burgdorferi strains in complement activation and serum resistance. Immunobiology. 1992 Sep;185(5):453–465. doi: 10.1016/S0171-2985(11)80087-2. [DOI] [PubMed] [Google Scholar]
  11. Bredius R. G., Driedijk P. C., Schouten M. F., Weening R. S., Out T. A. Complement activation by polyclonal immunoglobulin G1 and G2 antibodies against Staphylococcus aureus, Haemophilus influenzae type b, and tetanus toxoid. Infect Immun. 1992 Nov;60(11):4838–4847. doi: 10.1128/iai.60.11.4838-4847.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Busch U., Hizo-Teufel C., Boehmer R., Fingerle V., Nitschko H., Wilske B., Preac-Mursic V. Three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B afzelii, and B. garinii) identified from cerebrospinal fluid isolates by pulsed-field gel electrophoresis and PCR. J Clin Microbiol. 1996 May;34(5):1072–1078. doi: 10.1128/jcm.34.5.1072-1078.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Callister S. M., Schell R. F., Lovrich S. D. Lyme disease assay which detects killed Borrelia burgdorferi. J Clin Microbiol. 1991 Sep;29(9):1773–1776. doi: 10.1128/jcm.29.9.1773-1776.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Canica M. M., Nato F., du Merle L., Mazie J. C., Baranton G., Postic D. Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand J Infect Dis. 1993;25(4):441–448. doi: 10.3109/00365549309008525. [DOI] [PubMed] [Google Scholar]
  15. Coleman J. L., Rogers R. C., Benach J. L. Selection of an escape variant of Borrelia burgdorferi by use of bactericidal monoclonal antibodies to OspB. Infect Immun. 1992 Aug;60(8):3098–3104. doi: 10.1128/iai.60.8.3098-3104.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dever L. L., Jorgensen J. H., Barbour A. G. In vitro antimicrobial susceptibility testing of Borrelia burgdorferi: a microdilution MIC method and time-kill studies. J Clin Microbiol. 1992 Oct;30(10):2692–2697. doi: 10.1128/jcm.30.10.2692-2697.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dressler F., Whalen J. A., Reinhardt B. N., Steere A. C. Western blotting in the serodiagnosis of Lyme disease. J Infect Dis. 1993 Feb;167(2):392–400. doi: 10.1093/infdis/167.2.392. [DOI] [PubMed] [Google Scholar]
  18. Elkins C., Carbonetti N. H., Varela V. A., Stirewalt D., Klapper D. G., Sparling P. F. Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipopolysaccharide is not sialylated. Mol Microbiol. 1992 Sep;6(18):2617–2628. doi: 10.1111/j.1365-2958.1992.tb01439.x. [DOI] [PubMed] [Google Scholar]
  19. Fijen C. A., van den Bogaard R., Daha M. R., Dankert J., Mannens M., Kuijper E. J. Carrier detection by microsatellite haplotyping in 10 properdin type 1-deficient families. Eur J Clin Invest. 1996 Oct;26(10):902–906. doi: 10.1111/j.1365-2362.1996.tb02136.x. [DOI] [PubMed] [Google Scholar]
  20. Fikrig E., Bockenstedt L. K., Barthold S. W., Chen M., Tao H., Ali-Salaam P., Telford S. R., Flavell R. A. Sera from patients with chronic Lyme disease protect mice from Lyme borreliosis. J Infect Dis. 1994 Mar;169(3):568–574. doi: 10.1093/infdis/169.3.568. [DOI] [PubMed] [Google Scholar]
  21. Fitzgerald T. J. Activation of the classical and alternative pathways of complement by Treponema pallidum subsp. pallidum and Treponema vincentii. Infect Immun. 1987 Sep;55(9):2066–2073. doi: 10.1128/iai.55.9.2066-2073.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kochi S. K., Johnson R. C. Role of immunoglobulin G in killing of Borrelia burgdorferi by the classical complement pathway. Infect Immun. 1988 Feb;56(2):314–321. doi: 10.1128/iai.56.2.314-321.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kolb W. P., Kolb L. M., Podack E. R. C1q: isolation from human serum in high yield by affinity chromatography and development of a highly sensitive hemolytic assay. J Immunol. 1979 May;122(5):2103–2111. [PubMed] [Google Scholar]
  24. Kornblatt A. N., Steere A. C., Brownstein D. G. Experimental Lyme disease in rabbits: spirochetes found in erythema migrans and blood. Infect Immun. 1984 Oct;46(1):220–223. doi: 10.1128/iai.46.1.220-223.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kuiper H., Devriese P. P., de Jongh B. M., Vos K., Dankert J. Absence of Lyme borreliosis among patients with presumed Bell's palsy. Arch Neurol. 1992 Sep;49(9):940–943. doi: 10.1001/archneur.1992.00530330062017. [DOI] [PubMed] [Google Scholar]
  26. Kuiper H., van Dam A. P., Moll van Charante A. W., Nauta N. P., Dankert J. One year follow-up study to assess the prevalence and incidence of Lyme borreliosis among Dutch forestry workers. Eur J Clin Microbiol Infect Dis. 1993 Jun;12(6):413–418. doi: 10.1007/BF01967434. [DOI] [PubMed] [Google Scholar]
  27. Loos M., Clas F. Antibody-independent killing of gram-negative bacteria via the classical pathway of complement. Immunol Lett. 1987 Feb;14(3):203–208. doi: 10.1016/0165-2478(87)90102-7. [DOI] [PubMed] [Google Scholar]
  28. Lovrich S. D., Callister S. M., Schmitz J. L., Alder J. D., Schell R. F. Borreliacidal activity of sera from hamsters infected with the Lyme disease spirochete. Infect Immun. 1991 Aug;59(8):2522–2528. doi: 10.1128/iai.59.8.2522-2528.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Marconi R. T., Garon C. F. Development of polymerase chain reaction primer sets for diagnosis of Lyme disease and for species-specific identification of Lyme disease isolates by 16S rRNA signature nucleotide analysis. J Clin Microbiol. 1992 Nov;30(11):2830–2834. doi: 10.1128/jcm.30.11.2830-2834.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Merino S., Camprubí S., Albertí S., Benedí V. J., Tomás J. M. Mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing. Infect Immun. 1992 Jun;60(6):2529–2535. doi: 10.1128/iai.60.6.2529-2535.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moskophidis M., Luther B. Monoclonal antibodies with in vitro borreliacidal activities define the outer surface proteins A and B of Borrelia burgdorferi. Zentralbl Bakteriol. 1993 Jun;279(2):201–213. doi: 10.1016/s0934-8840(11)80398-1. [DOI] [PubMed] [Google Scholar]
  32. Nadelman R. B., Pavia C. S., Magnarelli L. A., Wormser G. P. Isolation of Borrelia burgdorferi from the blood of seven patients with Lyme disease. Am J Med. 1990 Jan;88(1):21–26. doi: 10.1016/0002-9343(90)90122-t. [DOI] [PubMed] [Google Scholar]
  33. Nadelman R. B., Schwartz I., Wormser G. P. Detecting Borrelia burgdorferi in blood from patients with Lyme disease. J Infect Dis. 1994 Jun;169(6):1410–1411. doi: 10.1093/infdis/169.6.1410. [DOI] [PubMed] [Google Scholar]
  34. Nohlmans L. M., de Boer R., van den Bogaard A. E., van Boven C. P. Genotypic and phenotypic analysis of Borrelia burgdorferi isolates from The Netherlands. J Clin Microbiol. 1995 Jan;33(1):119–125. doi: 10.1128/jcm.33.1.119-125.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pachner A. R., Delaney E., O'Neill T., Major E. Inoculation of nonhuman primates with the N40 strain of Borrelia burgdorferi leads to a model of Lyme neuroborreliosis faithful to the human disease. Neurology. 1995 Jan;45(1):165–172. doi: 10.1212/wnl.45.1.165. [DOI] [PubMed] [Google Scholar]
  36. Pavia C. S., Kissel V., Bittker S., Cabello F., Levine S. Antiborrelial activity of serum from rats injected with the Lyme disease spirochete. J Infect Dis. 1991 Mar;163(3):656–659. doi: 10.1093/infdis/163.3.656. [DOI] [PubMed] [Google Scholar]
  37. Philipp M. T., Aydintug M. K., Bohm R. P., Jr, Cogswell F. B., Dennis V. A., Lanners H. N., Lowrie R. C., Jr, Roberts E. D., Conway M. D., Karaçorlu M. Early and early disseminated phases of Lyme disease in the rhesus monkey: a model for infection in humans. Infect Immun. 1993 Jul;61(7):3047–3059. doi: 10.1128/iai.61.7.3047-3059.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Postic D., Assous M. V., Grimont P. A., Baranton G. Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. Int J Syst Bacteriol. 1994 Oct;44(4):743–752. doi: 10.1099/00207713-44-4-743. [DOI] [PubMed] [Google Scholar]
  39. Preac-Mursic V., Wilske B., Schierz G. European Borrelia burgdorferi isolated from humans and ticks culture conditions and antibiotic susceptibility. Zentralbl Bakteriol Mikrobiol Hyg A. 1986 Dec;263(1-2):112–118. doi: 10.1016/s0176-6724(86)80110-9. [DOI] [PubMed] [Google Scholar]
  40. Péter O., Bretz A. G. Polymorphism of outer surface proteins of Borrelia burgdorferi as a tool for classification. Zentralbl Bakteriol. 1992 Jun;277(1):28–33. doi: 10.1016/s0934-8840(11)80867-4. [DOI] [PubMed] [Google Scholar]
  41. Péter O., Bretz A. G., Zenhäusern R., Roten H., Roulet E. Isolement de Borrelia burgdorferi du liquide céphalorachidien de trois enfants avec une atteinte neurologique. Schweiz Med Wochenschr. 1993 Jan 13;123(1-2):14–19. [PubMed] [Google Scholar]
  42. Rijpkema S. G., Molkenboer M. J., Schouls L. M., Jongejan F., Schellekens J. F. Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol. 1995 Dec;33(12):3091–3095. doi: 10.1128/jcm.33.12.3091-3095.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rosa P. A., Schwan T., Hogan D. Recombination between genes encoding major outer surface proteins A and B of Borrelia burgdorferi. Mol Microbiol. 1992 Oct;6(20):3031–3040. doi: 10.1111/j.1365-2958.1992.tb01761.x. [DOI] [PubMed] [Google Scholar]
  44. Sadziene A., Barbour A. G., Rosa P. A., Thomas D. D. An OspB mutant of Borrelia burgdorferi has reduced invasiveness in vitro and reduced infectivity in vivo. Infect Immun. 1993 Sep;61(9):3590–3596. doi: 10.1128/iai.61.9.3590-3596.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sadziene A., Thomas D. D., Barbour A. G. Borrelia burgdorferi mutant lacking Osp: biological and immunological characterization. Infect Immun. 1995 Apr;63(4):1573–1580. doi: 10.1128/iai.63.4.1573-1580.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sadziene A., Thompson P. A., Barbour A. G. In vitro inhibition of Borrelia burgdorferi growth by antibodies. J Infect Dis. 1993 Jan;167(1):165–172. doi: 10.1093/infdis/167.1.165. [DOI] [PubMed] [Google Scholar]
  47. Schmitz J. L., Lovrich S. D., Callister S. M., Schell R. F. Depletion of complement and effects on passive transfer of resistance to infection with Borrelia burgdorferi. Infect Immun. 1991 Oct;59(10):3815–3818. doi: 10.1128/iai.59.10.3815-3818.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schwan T. G., Burgdorfer W., Garon C. F. Changes in infectivity and plasmid profile of the Lyme disease spirochete, Borrelia burgdorferi, as a result of in vitro cultivation. Infect Immun. 1988 Aug;56(8):1831–1836. doi: 10.1128/iai.56.8.1831-1836.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Scriba M., Ebrahim J. S., Schlott T., Eiffert H. The 39-kilodalton protein of Borrelia burgdorferi: a target for bactericidal human monoclonal antibodies. Infect Immun. 1993 Oct;61(10):4523–4526. doi: 10.1128/iai.61.10.4523-4526.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Shoberg R. J., Jonsson M., Sadziene A., Bergström S., Thomas D. D. Identification of a highly cross-reactive outer surface protein B epitope among diverse geographic isolates of Borrelia spp. causing Lyme disease. J Clin Microbiol. 1994 Feb;32(2):489–500. doi: 10.1128/jcm.32.2.489-500.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Steere A. C. Lyme disease. N Engl J Med. 1989 Aug 31;321(9):586–596. doi: 10.1056/NEJM198908313210906. [DOI] [PubMed] [Google Scholar]
  52. Sădziene A., Rosa P. A., Thompson P. A., Hogan D. M., Barbour A. G. Antibody-resistant mutants of Borrelia burgdorferi: in vitro selection and characterization. J Exp Med. 1992 Sep 1;176(3):799–809. doi: 10.1084/jem.176.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tenner A. J., Ziccardi R. J., Cooper N. R. Antibody-independent C1 activation by E. coli. J Immunol. 1984 Aug;133(2):886–891. [PubMed] [Google Scholar]
  54. Truedsson L., Sjöholm A. G., Laurell A. B. Screening for deficiencies in the classical and alternative pathways of complement by hemolysis in gel. Acta Pathol Microbiol Scand C. 1981 Jun;89(3):161–166. doi: 10.1111/j.1699-0463.1981.tb02680.x. [DOI] [PubMed] [Google Scholar]
  55. Viljanen M. K., Oksi J., Salomaa P., Skurnik M., Peltonen R., Kalimo H. Cultivation of Borrelia burgdorferi from the blood and a subcutaneous lesion of a patient with relapsing febrile nodular nonsuppurative panniculitis. J Infect Dis. 1992 Mar;165(3):596–597. doi: 10.1093/infdis/165.3.596. [DOI] [PubMed] [Google Scholar]
  56. Wetzler L. M., Barry K., Blake M. S., Gotschlich E. C. Gonococcal lipooligosaccharide sialylation prevents complement-dependent killing by immune sera. Infect Immun. 1992 Jan;60(1):39–43. doi: 10.1128/iai.60.1.39-43.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Whicher J. T., Higginson J., Riches P. G., Radford S. Clinical applications of immunofixation: detection and quantitation of complement activation. J Clin Pathol. 1980 Aug;33(8):781–785. doi: 10.1136/jcp.33.8.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wienecke R., Zöchling N., Neubert U., Schlüpen E. M., Meurer M., Volkenandt M. Molecular subtyping of Borrelia burgdorferi in erythema migrans and acrodermatitis chronica atrophicans. J Invest Dermatol. 1994 Jul;103(1):19–22. doi: 10.1111/1523-1747.ep12388947. [DOI] [PubMed] [Google Scholar]
  59. Wilske B., Preac-Mursic V., Göbel U. B., Graf B., Jauris S., Soutschek E., Schwab E., Zumstein G. An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J Clin Microbiol. 1993 Feb;31(2):340–350. doi: 10.1128/jcm.31.2.340-350.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. van Dam A. P., Kuiper H., Vos K., Widjojokusumo A., de Jongh B. M., Spanjaard L., Ramselaar A. C., Kramer M. D., Dankert J. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis. 1993 Oct;17(4):708–717. doi: 10.1093/clinids/17.4.708. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES